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ABSTRACT

This thesis presents several approaches that generalize the Laplace-
Beltrami operator and its closely related gradient and divergence
operators to arbitrary polygonal and polyhedral meshes. We start by
introducing the linear virtual refinement method, which provides a simple
yet effective discretization of the Laplacian with the help of the Galerkin
method from a Finite Element perspective. Its flexibility allows us to
explore alternative numerical schemes in this setting and to derive a
second Laplacian, called the Diamond Laplacian with a similar approach,
but this time combined with the Discrete Duality Finite Volume method.
It offers enhanced accuracy but comes at the cost of denser matrices and
slightly longer solving times.

In the second part of the thesis, we extend the linear virtual refinement
to higher-order discretizations. This method is called the quadratic virtual
refinement method. It introduces variational quadratic shape functions for
arbitrary polygons and polyhedra. We also present a custom multigrid
approach to address the computational challenges of higher-order
discretizations, making the faster convergence rates and higher accuracy
of these polygon shape functions more affordable for the user.

The final part of this thesis focuses on the open degrees of freedom
of the linear virtual refinement method. By uncovering connections
between our operator and the underlying tessellations, we can enhance
the accuracy and stability of our initial method and improve its overall
performance. These connections equally allow us to define what a
“good” polygon would be in the context of our Laplacian. We present
a smoothing approach that alters the shape of the polygons (while
retaining the original surface as much as possible) to allow for even better
performance.
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INTRODUCTION

The discrete Laplace-Beltrami operator, or Laplacian for short, plays a promi-
nent role in geometric modeling and related fields. As a generalization of the
second derivative to functions defined on surfaces, it is intimately related to
the notion of curvature and signal frequencies. Furthermore, it allows us to
solve numerous partial differential equations on discrete surface and volume
meshes, which are essential for various computer graphics applications, such
as mesh smoothing, parameterization, or fairing. With triangle and tetrahedral
meshes being the standard surface and volume representations in computer
graphics and geometry processing, the discretization of the Laplace operator
for these types of tessellations has received much attention over the years, with
the classical cotangent discretization [PP93; MDS+03; DMS+99; Dzi88]| being
the de-facto standard.

However, while discrete operators for triangle meshes are well understood, this
is not the case for general polygon meshes, despite the growing demand for the
latter in many modeling and engineering applications. Recent papers point
out that the restriction to triangle or tetrahedral meshes, while simple and
convenient, is no longer sufficient. Many users require more general shapes
to express geometric properties and features in their models. Applications
benefiting from a more flexible range of elements are, for example, fracture
modeling [TS08; Bis09; OSTL+12] or linear elasticity problems [TS06]. Lu
et al. [LSZ+14] equally made use of polyhedra, by introducing a hollow-
ing optimization algorithm based on the concept of honeycomb-structures.
Additionally, one of the necessary steps in their algorithm requires the de-
composition of a volume into polyhedral Voronoi cells. In general, structures
containing honeycomb geometry have been used in engineering for a long time,
since they minimize the required material without losing structural strength
[JWW+14]. In the meshing community, as noted by Peng et al. [PPW18],
meshing algorithms commonly produce tessellations that incorporate non-
triangular elements, such as quad-dominant meshes, mixed tri/quad meshes,
or Voronoi-based polygon meshes. Peng et al. further emphasize that these
patterns have various applications in architecture, industrial design, and art.
Polygon meshes and the differential operators defined on them are also used
in the computer animation industry, as they effectively capture geometric
features and facilitate both artistic design and fabrication processes [ GBD20].
For example, Narayan [Nar23] introduced an approach to generate hair from
arbitrary polygon meshes using a generalized Laplace operator.

This progress was only possible since several strategies to extend the Laplacian
to general polygon meshes were proposed in recent years [AW11; GBD20;
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INTRODUCTION

BB23]. However, this generalization is not without challenges. For instance,
arbitrary polygons might not be inherently planar, potentially resulting
in twisted surfaces in 3D. In this thesis, we expand those generalizations by
proposing a surprisingly simple yet very effective discretization of the polygon
Laplace operator, called the “linear virtual refinement method”. Inserting
a carefully placed vertex for every polygon allows us to define a refined
triangulation that retains the symmetries and defines a surface consistent with
the polygon mesh. Using the Galerkin method, we then coarsen the cotangent
Laplacian defined on the triangulation to obtain a Laplacian on the original
polygon mesh, completely hiding the refinement from the user. Furthermore,
since the linear virtual refinement method allows us to define shape functions
in the finite element context, this thesis will further expand this approach
and focus on constructing higher-order basis functions defined on arbitrary
polygons and polyhedra.

Additionally, we will adapt the virtual refinement by using an alternative dis-
cretization to the cotangent Laplacian, called the Discrete Duality Finite Vol-
ume method (DDFV). This approach leads to a new definition of gradient and
divergence operators, which can be combined to the so-called Diamond Lapla-
cian. We incorporate the primal and dual mesh of the Finite Volume Method
(FVM) and accommodate the oblique intersection of primal and correspond-
ing dual elements. Specifically, we define discrete gradients, respectively di-
vergences, per diamond: the region spanned by a dual edge and corresponding
simplicial primal element.

In the last chapter of this thesis, we will leverage knowledge from FEM on how
the shape of triangles affects both the error and the operator’s condition. We
noticed that shape quality can be encapsulated as the trace of the Laplacian
and suggest that trace minimization is a helpful tool to improve numerical be-
havior. We then apply this observation to the linear virtual refinement method
to derive optimal parameters per polygon to enhance both the accuracy and
stability of the resulting Laplacian.

In order to make the reader more familiar with the general topic, we will first re-
peat the necessary definitions for the Laplacian’s construction at the example
of triangles, followed by more detailed explanations of the respective polyg-
onal and polyhedral operators and their different ideas in each chapter. We
will also discuss the properties a discrete Laplacian should fulfill based on the
work presented by Wardetzky et al. [WMK+07] and analyze the introduced
operators in this context. The defined Laplacians will all be subjected to vari-
ous quantitative comparisons throughout each chapter and compared to other
state-of-the-art approaches that are well-established in the graphics commu-
nity. Ultimately, this thesis aims to give the reader the intuition to choose the
optimal polygonal Laplacian for their given situation.



The main contributions of this thesis are:

e Twonew discrete Laplace operators that can be used on various polygonal
and polyhedral meshes.

e The extension of the linear virtual refinement method to higher-order
shape functions.

e A thorough analysis of the optimal degrees of freedom for the linear vir-
tual refinement method.

More detailed lists of contributions can be found in each chapter.

This thesis is based on the following publications:

e Astrid Pontzen (née Bunge), Philipp Herholz, Michael Kazhdan, Mario
Botsch “Polygon Laplacian Made Simple”, Computer Graphics Forum 39(2),
(Proc. Eurographics), 2020.

e Astrid Pontzen (née Bunge), Mario Botsch, Marc Alexa, “The Diamond
Laplace for Polygonal and Polyhedral Meshes” Computer Graphics Forum
40(5), (Proc. Symp. on Geometry Processing), 2021.

e Astrid Pontzen (née Bunge), Philipp Herholz, Olga Sorkine-Hornung,
Mario Botsch, Michael Kazhdan, “Variational Quadratic Shape Functions
for Polygons and Polyhedra”, ACM Transaction on Graphics 41(4), (Proc.
ACM SIGGRAPH), 2022.

e Astrid Pontzen (née Bunge) and Mario Botsch, “A Survey on Discrete
Laplacians for General Polygonal Meshes”, Computer Graphics Forum
42(2),2023.

e Astrid Pontzen (née Bunge), Dennis R. Bukenberger, Sven D. Wagner,
Marc Alexa, Mario Botsch, “Polygon Laplacian Made Robust”, Computer
Graphics Forum 43(2), (Proc. Eurographics), 2024.

The source code for all the individual operators and experiments presented in
this thesis can be found here:

e https://github.com/mbotsch/polyLaplace
e https://github.com/mkazhdan/VariationalPolyShapeFunctions


https://github.com/mbotsch/polyLaplace
https://github.com/mkazhdan/VariationalPolyShapeFunctions




FUNDAMENTALS

In this chapter, we present fundamental concepts that provide the theoretical
groundwork for this thesis. We start by defining key notations and concepts
concerning meshes and the discrete Laplace-Beltrami operator. Following this,
we introduce the Finite Element Method (FEM) at the example of the cotan-
gent Laplacian. Lastly, we offer a brief overview and introduction of three
existing polygon Laplacians. These three discretizations will serve as the pri-
mary benchmark methods for evaluating the discrete Laplacians presented in
this thesis, using a test framework that will be established at the end of this
chapter.

2.1 BASIC DEFINTIONS

Consider a 2D polygon mesh M = (V, &, F) embedded in 3D, with vertices
V = {vy,...,0m}, edges &, and faces F. Each vertex v; € V has an associated
3D position x; = (x;,1;,2;)T and each face f consists of n  vertices. We define
an additional set of oriented halfedges H, where for each inner edge e € £
there exist two oppositely oriented halfedges, while each boundary edge has
only one. Likewise, a 3D polyhedral mesh has the same structure with only
one additional set consisting of the volumetric cells C. The matrix X € RIVI*3
refers to the vertex positions of the mesh in its rows.

2.1.1 Properties of a Discrete General Laplace Operator

In the smooth setting the Laplacian of a function f is defined as
Af =divV{f. (2.1)

We define its discretised equivalent L € RIVI*IV| as the product of the inverse
of a so-called mass matrix M € RIVI*IV and stiffness matrix § € RIVI*!VI:

L=-Ms (2.2)

L is generally referred to as the strong, pointwise form of the Laplacian and S
is its weak, integrated form. The exact conditions that are imposed on these
matrices will be discussed in the next section.

The smooth Laplace-Beltrami operator has a set of key structural properties
that each discretization must be able to fulfill. The correlation between these
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smooth properties and discrete Laplace operators has been discussed inten-
sively for triangle meshes by Wardetzky et al. [WMK+07] and for tetrahedral
meshes by Alexa et al. [AHK+20]. However, these requirements equally hold
for general polygon and polyhedral meshes and are therefore important crite-
ria for the numerical quality of a discrete Laplacian. Unfortunately, as pointed
out by Wardetzky et al. [WMK+07], most meshes do not allow for Laplacians
to satisfy all discrete properties simultaneously. In this section, we will rein-
troduce them individually to establish characteristics by which the quality of a
polygon Laplacian operator can be assessed.

In the continuous setting, consider a single connected manifold (), possibly
with boundary, that is equipped with a Riemannian metric. We define a func-
tion u : 3 — R and its discrete equivalent u € R™, whose entries are the
function values of u sampled at the vertices of the surface mesh M. The strong
Laplacian L € RIVI*IVI defined on M is given as a |V| x |V| matrix pair (M, S)
consisting of a sparse symmetric matrix M and a sparse matrix S.

Symmetry Given two functions u and v that are sufficiently smooth and van-
ish along the boundary of (), the smooth Laplacian is self-adjoint with respect
to the L? inner product of these functions, meaning

(Au,v) = (u, Av) (2.3)

with (1,v) = [uvdA. We therefore request the strong form L to be a self-
adjoint operator with respect to the inner product induced by the symmetric
mass matrix M, meaning

(Lu)"Mv = u"M(Lv) (2.4)
& u'STv=u'Sy (2.5)

for any u and v.

Locality The smooth Laplacian of a function u at a point p should only de-
pend on the values u(q) of other points q in an e-ball around p. This means
that the discrete Laplacian should also operate locally in the 1-ring neighbor-
hood of the respective vertex and should not be affected by distant vertices in
the mesh.

Linear Precision In the smooth setting, given that u is a linear function, the
Laplacian of said function has to be zero in planar regions of the manifold. The
discrete equivalent is similar: Given a planar mesh M and any linear function
u, we require the strong version of the Laplacian L to satisfy

(Lu)i =0 (2.6)
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for each inner vertex v;, where (-); denotes the i-th entry or row of the vector
or matrix within the parenthesis. Alternatively, we can omit the influence of
the mass matrix and require the stiffness matrix multiplied with the vertex po-
sitions to satisfy

(8X); = 0. (2.7)

Positive Semi-Definiteness and Null Space In the smooth setting, the Dirich-
let energy of u on a Surface S, is defined as

Eo(u) = [ [Vu|P da (28)

and has to be greater than or equal to zero. Its discrete version can be expressed
with the help of the stiffness matrix as

“u'Su. (2.9)
2

Therefore, S has to be positive semi-definite in order for the energy to remain
non-negative. Note that the Laplace-Beltrami itself is a negative semi-definite
linear operator, in contrast to the also commonly used Laplace-de Rham opera-
tor, which is typically positive semi-definite. If applied to scalar functions, both
operators are equivalent up to a sign, which makes the “correct” choice for the
semi-definiteness of the stiffness matrix a delicate matter. In this thesis, we fo-
cus on the Laplace-Beltrami and its definition as the divergence of the gradient.
We hence require the stiffness matrix to be positive semi-definite in order to be
consistent with Equation (2.2). If an operator is based on the Laplace-de Rham,
we omit the negative sign in Equation (2.2) to obtain the positive semi-definite
operator. However, the results of these matrices will be negated on our part
in order to yield equivalent results to the other discretizations. In this setting,
the stiffness matrices are once again positive semi-definite. This will only be
relevant for the introduction of the polygon DEC operators in Section 2.3, but
we still want to highlight this detail in order to avoid confusion. But in general,
after this point, each stiffness matrix within this thesis will be required to be
positive semi-definite. A second aspect of this property addresses the kernel
of the Laplacian. The smooth Dirichlet energy vanishes for constant functions.
Therefore, the kernel of S has to be one-dimensional as well and can only con-
tain constant functions. If the stiffness matrix can be expressed as

(Su); = ) wij(u; —uj), (2.10)
j
the discrete Laplacian automatically fulfills this property.

Maximum Principle The smooth maximum principle requires that harmonic
functions (Au = 0) have no local extremum at interior points of the manifold

7
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Q). For example, this property assures that approximated solutions of diffusion
problems flow from regions with higher potential to regions with lower poten-
tial, instead of the other way round. The discrete equivalent can be directly
addressed through the entries of the stiffness matrix by the so-called negative
weight property, which is a sufficient but not necessary condition for the dis-
crete maximum principle. It demands that for each vertex v; the entries S;;
have to be less than or equal zero if i # j (leading to positive weights on the
diagonals) and at least one entry per row has to be nonzero.

Convergence The convergence property requires that approximate solutions
involving the Laplace operator converge to the exact solution of the partial dif-
ferential equation (PDE) under refinement of the mesh, which was analyzed
by Hildebrandt et al. [HPW06] and Wardetzky [ War08]. This property will not
be proven for the upcoming operators, but analyzed empirically in the respec-
tive result sections.

2.2 FINITE ELEMENT METHOD

The finite element method is often used to approximate the solution u to a given
PDE on a simplicial mesh with the help of a finite set of basis functions. The
exact number of basis functions depends on both the shape of the element and
the order of the basis itself. In the linear case, we typically associate an indi-
vidual shape function ¢; : R?> — R with the vertex v; and its position x;, also
commonly referred to as node. Now, instead of solving the PDE directly, the
objective changes to finding suitable coefficients u;, i = 1,...|V|, that approxi-
mate the unknown solution u of the system with

4

u(x) = ;Mi(l’i(x)- (2.11)

For example, a common problem solved with the finite element method is the
Poisson equation —Au = f for a known function f. Given a surface mesh, the
discretized PDE leads to a linear system Su = f with the stiffness matrix S being
defined as the integrated dot product of the gradients of the basis functions:

Si]' = /M<quz,qu]> (2.12)

While a variety of different bases can be used, we focus on the linear nodal
shape functions that are defined piecewise per face and satisfy the so-called
Lagrange interpolation property:

1 ifi=j,
(x;) = 2.13
#il ]) {O otherwise. ( )
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Now, consider a polygon face f € F with iy vertices. We want the chosen basis
to satisfy additional properties within each respective element of the mesh in
order to guarantee convergence under refinement [Hug12]:

1. They have to be C! continuous within f and CY across its boundaries.

2. For the basis to satisfy constant precision, meaning that they are able to
exactly reproduce constant functions, the ¢; have to form a partition of

unity
nf
Y gi(x) =1. (2.14)
i=1
3. They have to fulfill the linear reproduction property
i
2 Pi(x)x; = x (2.15)

on planar polyons.

The linear Lagrange basis functions meet all these requirements on triangle
meshes. They are also known as barycentric coordinates, P1 elements or”hat”
basis functions, referring to their shape. We will use them in the next section
to define the well known cotangent Laplacian.

2.2.1 Cotangent Laplacian on Triangle Meshes

Consider a triangle mesh Mt = (V,7) defined by a set of vertices
V = {vy,...,0n} and triangle faces 7. Let {¢1,...,¢¥n} be the piece-
wise linear Lagrange basis functions defined on M. The respective triangle
mass and stiffness matrices M%,8% € RIYIXIVI of the cotangent Laplace
operator L® are then discretized as

(ti| + [t

B if (i € N(Z)i)
Mjj = / vivi=9 Y My ifj=i (2.16)
Mr oeN(v;)
L0 otherwise,
( cotaw;; + cot bj;
—— > Pi ifj € N(vi),
Sij = / (Vi Vi) = ¢ — Y s§ ifj =1, (2.17)
Mr o eN(o;)
0 otherwise.

\
Here, the triangles t;; and ¢;;, are adjacent along the edge ¢;; = (vi,vj) and
their areas are denoted by }tijk] and ‘tﬁh|. The respective interior angles
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of t;j and ¢, opposite to the edge e;; are given by a;; and
Bij (see inset), while A'(v;) denotes the one-ring vertex
neighborhood around v;. The cotangent of the corner an-
gle 0y at vertex vy within a triangle #;j is given as the fol-
lowing ratio between squared triangle edge lengths and
triangle area

cotf, = ’ejk|2 + |‘3ik|2 - |eij’2
4t

(2.18)

The scalar |ei]~] denotes the length of edge ¢;;. As already mentioned, our def-
inition of the cotangent stiffness matrix is positive semi-definite in contrast to
the negative semi-definite Laplacian matrix L® (see Equation (2.2)). This has
the consequence that all eigenvalues of S are non-negative, which makes them
more convenient to handle and will become relevant in upcoming chapters.
The key principle of FEM is to divide a large system into smaller, easier to han-
dle finite elements. In this spirit, we can obtain the same matrices as defined in
Equations (2.16) and (2.17) by constructing local mass and stiffness matrices
Mp,S¢ € R3*3 per triangle t € T

(MtA)ij = /thill’j/ (2.19)
(S£); = /t<v1pi,vlpj>. (2.20)

These local matrices are then assembled into M* and S* by assigning each
vertex v; the i-th row and column of the global matrix. The entries are then the
sum over the respective values in the local triangle matrices in which the vertex
v; was involved.
Emulating the continuous setting with the Laplacian being defined as the diver-
gence of the gradient, one can express the gradient operator on triangle meshes
as a matrix G* € R371*V| consisting of local sub-matrices G# € R3*3 per i-
th triangle t = t;. Each column of G?# is associated with the gradient of one
of the respective vertices. For example, the first column referring to vertex v;,
would be N
Go(;1) = K =X (2.21)
2t
where L denotes a counterclockwise rotation by 90 deg in the triangle plane.
The global matrix G* is then assembled by placing the respective face gradients
at the column entries of the individual vertices v; and setting everything else
to zero. This can further be used to discretize the divergence as

D* = (G*)" M, (2.22)

with M € R3I71*3I7] being the diagonal mass matrix containing the area of
the i-th triangle in the three associated consecutive diagonal entries [BSP+06].

10



2.2 FINITE ELEMENT METHOD

The product of D® and G* gives us the stiffness matrix S%, which is consistent
with the continuous setting, but requires a concrete embedding of the mesh in
contrast to the intrinsic formulation of S* itself [Sha21].

2.2.2 Cotangent Laplacian on Tetrahedral Meshes

In the volumetric case, given a tetrahedral mesh M, the stiffness and mass ma-
trices are discretized similarly to Equation (2.16) and Equation (2.17), but with
the difference that the volumetric linear Lagrange basis is used instead. This
leads to the 3D stiffness matrix

(1 i .
—62|6k1|cot6kl if j € N(i),
tijki

1) " Leenvo S Mfi=4 (2:29)

\ 0 otherwise,

The sum is taken over all thetrahedra t;j; that include the edge connecting the

vertices v; and v;. The angle 9,?1 is the respective interior angle between the
adjacent triangles #;; and tj; [Cral9].

A commonly used alternative to the volumetric version of Equation (2.16) is
the (lumped) diagonal mass matrix M® [AHK+20; Cra19] with

1
Mj; = 1 Y |t - (2.24)

tijki

The sum is taken over all tetrahedra containing the vertex v; and ‘tijkl ‘ denotes
the volume of the tetrahedron #;;.

The discrete local gradient operator for the n-th tetrahedron t;;; within the
mesh can be defined as follows [ AHK+20]: Given a vertex v; within the tetrahe-
dron, let nj; be the face normal of the opposite triangle ¢;;. The local gradient
matrix G, € R34 can then be constructed column-wise for each vertex within
the element. For example, with the first column referring to vertex v;, it would
be defined as

G:(:,1) =

njkl- (225)

The local sub-gradients are then assembled into the global gradient operator
G2 € R3CXIVI, Similar to Equation (2.22), the volumetric divergence operator
D% € RIVI¥3Cl is then given by

D = (G*)'V, (2.26)

with V € R3I¢I*3ICl being the diagonal mass matrix containing the volumes of
the tetrahedron i in the three consecutive diagonal entries associated with cell.
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2.2.3 FEM on Polygonal and Polyhedral Meshes

For general polygons, there exist a variety of generalized barycentric coordinates
(GBC) [Flo03; JSW05; JMD+07; HS08; Bis14], which are based on the idea to
express any point within the polygon as the weighted sum over its boundary
nodes. This defines local shape functions that can be used in the finite element
analysis. Extensive surveys [Flo15; CG16] have already discussed the benefits
and properties of these shape functions, which were also incorporated in poly-
hedral finite element methods [MRS14] for volume meshes. We will compare
the operators presented in this thesis against one representative set of poly-
gon shape functions, called the harmonic coordinates [JMD+07]. While other
methods like the maximum entropy coordinates [HS08] are very present in the
FEM analysis on polytopes, we still chose the harmonic shape functions due to
their numerous natural mathematical properties that make them so well suited
for FEM. This includes smoothness, non-negativity, the mean-value property,
and minimization of the Dirichlet energy [MKB+08; CG16]. They can also be
defined on arbitrary convex and non-convex polygons and polyhedra [Bis14].
The only real drawback of these shape functions is the lack of a closed form,
which requires costly numerical integration. Furthermore, they are only de-
fined on planar elements. Therefore, if an upcoming polygon mesh has non-
planar faces, we will consider its planar projection to construct the shape func-
tions. The harmonic coordinates used in this thesis are based on the work of
Martin et al. [ MKB+08].

2.3 POLYGON LAPLACIANS BASED ON DISCRETE
EXTERIOR CALCULUS

The Mimetic Finite Difference method (MFD) [LMS14] is an approximation
strategy whose main goal is to define discrete differential operators that try
to preserve, or mimic, certain critical mathematical and physical properties of
an underlying PDE. Its core principle lies in the definition of a so-called pri-
mary operator, typically gradient, divergence or curl, based on discrete vector
and tensor calculus and various forms of Stokes’ theorem. The other operators
are then derived by using discrete analogs of Green’s formulas in order to re-
tain a duality relationship to the primary term. Several authors (e.g. [BLS05;
BLS+07]) applied the MFD method to derive mimetic discretizations on polyg-
onal and polyhedral meshes and stressed that one of the key components is the
definition of an accurate mimetic inner product matrix. This matrix is a vital
part in some derivations of the discrete Laplacian. Although the MFD is not
directly focused on the construction of this operator, its theory influenced two
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polygon Laplacians that are well known in the graphics community. This sec-
tion will shortly introduce both methods to establish a basic understanding
of their core principles. Both operators, besides the discrete harmonic coordi-
nates, will then be used as a main comparison for the upcoming polygon Lapla-
cians introduced in this thesis. As for their construction, both methods focus
on a local approach that builds the required matrices per face. We therefore
define preliminary:

f f

e Ef=(e},..., ey f)T is the n¢ x 3 matrix containing in its rows the cyclically

ordered edge vectors e{ = xj(rl. 1) modny x{ of the face f.

e B = (b{ ooy b£ f)T is the ny X 3 matrix containing in its rows the barycen-

f_ f f f
tersb] = 3 <x(i+1) mod n; +x; ) of each edge e; .

2.3.1 Algebraic Polygon Laplacian

The operator introduced by Alexa and Wardetzky [AW11] relies on an
algebraic approach and extends the MFD-based inner product stabilization
[BLSO5] to two-dimensional manifolds that even allow for non-planar poly-
gons. Given a polygon surface mesh M embedded in 3D, the only restrictions
are that it has to be oriented, meaning that two adjacent faces have to be oppo-
sitely oriented on their shared edge, and that the faces are simple, meaning that
they are not self-intersecting and have boundaries that form a closed loop. The
operator is closely tied to the principles involved in Discrete Exterior Calculus
(DEC) derivations of the discrete Laplacian.

Algebraic Framework LetTX, k € {0,1}, be the linear function space of dis-
crete k-forms on M. A k-form can be thought of as a function that takes in k-
surfaces and assigns them their integrated value as output, with a 0-surface be-
ing anode, a 1-surface an edge, a 2-surface a face and so on. Alexa and Wardet-
zky derive their polygon Laplacian for O-forms from the Laplace-de Rahm op-
erator, which for a scalar-valued function u is defined as

Au = d*du. (2.27)

In this context d : T® — T is the exterior derivative and d* : T! — T the
codifferential, which is defined as the adjoint of d with respect to the square
integrable inner product [Ros97]. They use the so-called coboundary operator
as a discrete version of the smooth exterior derivative, with

(du)(hij) = u(j) — u(i) (2.28)

and h;; being the oriented halfedge from vertex v; to v;. The definition of a suit-
able adjoint operator d* requires inner products on the k-form function spaces
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and is therefore, in contrast to the exterior derivative, metric dependent. The
inner products can be expressed as two symmetric positive definite matrices
M € RVI*IVIand M; € R/, Any choice of M and M; gives us an expres-
sion for the discrete Laplacian

L=d*d=M"1s, (2.29)
with
S =d"Md, (2.30)

which, negated, becomes equivalent to Equation (2.2). The matrix version of
the coboundary operator d € RI"/*V| is often referred to as the difference op-
erator. Its k-th row associated with the k-th halfedge h;; € H can be expressed
as

-1 [ =4
dy =<1 1=}, (2.31)
0 otherwise,

which is only non-zero for the entries dy; and dy; associated with the vertices
connected by the halfedge.

Choice Of Inner Product Matrices Although in theory any choice for the two
inner product matrices would be feasible, not all of them yield the same quality
of results. Alexa and Wardetzky therefore motivate their chosen construction
by fulfilling the desired criteria discussed in Section 2.1.1. The inner product
matrix for O-forms assigns each vertex a certain mass. In order to retain locality,
the matrix M is given by

M; =) ? (2.32)

fau; U f

where | f| denotes the magnitude of the polygons’ vector area. As already men-
tioned, we also consider non-planar polygons in R? that do not necessarily de-
fine a surface. Therefore, the vector area

1
=15 Y Xi X X(i11) mod nf | - (2.33)
U,‘Ef
is defined as the area of the largest orthogonal projection of the polygon onto

a plane.
We will first look at the definition of the inner product for 1-forms from a local
perspective per face and then later assemble the individual matrices into the
global representation, since the process can be repeated per element f € F.
The starting point for the construction is the matrix M £ € R given by

- 1 T

M, = —BB;, (2.34)

PO
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which was previously defined by Brezzi et al. [BLS05] and is motivated by the
Laplacian’s connection to mean curvatures. While this choice of the inner prod-
uct matrix is generally positive semi-definite, in order for the Laplacian itself to
fulfill this property, the inner products have to be positive definite. Alexa and
Wardetzky therefore add a stabilization term to extend Brezzi et al.’s definition
to non-planar polygons and give rise to a positive definite inner product

. N T
M; := M + C;UCT. (2.35)

Here, f is the maximum orthogonal projection of the polygon f and Cr €
R"#*("~2) is a matrix whose columns span the kernel of E} Combined with
any choice of a symmetric positive definite matrix U; € R(7r=2)%(ny _2), the
stabilization term will lead to a positive definite inner product M. Using a
parameter 0 < A € R, Alexa and Wardetzky define the matrix U as

U,

f = )\If, (2.36)

with Iy being the (1 — 2)-dimensional identity matrix. Additionally, they
choose Cf such that its columns are orthonormal, and the final inner product
leads to a per-face Laplacian stiffness matrix

.
Sy =d[Myd, (2.37)

that is not affected by scaling, is local and linearly precise. These local matrices
are then assembled into the global stiffness matrix S by assigning each vertex
v; the i-th row and column of S in which the sum over their respective entries
in the local matrices are collected.

2.3.2 Geometric Polygon Laplacian

Alexa and Wardetzky’s focus lies solely on the definition of the discrete Lapla-
cian and did not further investigate other operators. This was later addressed
by de Goes et al. [GBD20], who defined a variety of discrete differential poly-
gon operators that also serve as a generalization of the MFD, but with a stabi-
lization term for the inner product matrix on 1-forms inspired by the virtual ele-
ment method (VEM) [ VBM13]. The main focus of de Goes et al. [GBD20] was
a new linearly precise discretization of the gradient, which allows to define a
consistent set of operators, including their own interpretation of the Laplacian.

Polygon Gradient As in the previous section, the definition of the gradient
will be applied locally per polygon f € F, but can be assembled into a global
gradient matrix G € R3 ¥Vl acting on the complete mesh. Given a scalar
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function u defined on f, we want to find a matrix G that simulates the behav-
ior of the gradient Vu on the polygon. For planar elements, this would nor-
mally be achieved by applying Stokes” theorem to Vu and deriving a matrix
discretization through the weak form of the resulting boundary integral. How-
ever, since the polygons of the given mesh are not necessarily planar it is not
clear how to define the surface normal n(x) at the boundary points x. Therefore,
the standard approach cannot be used. De Goes et al. [GBD20] circumvent this
problem by evaluating the co-gradient operator

Vul(x) := n(x) x Vu(x), (2.38)

on which applying Stoke’s theorem leads to

//f Vul(x)dA = ygfu(x)t(x) dx, (239)

with t(x) being the unit tangent vector at boundary point x. This expression is
independent of the surface of the polygon and only requires the tangent vectors
along the boundary, which are uniquely defined. This leads to de Goes et al.’s
definition of the the discrete gradient matrix

1
Gf= —m[nf]E}Avgf (2.40)

per polygon f, which is proven to be linearly precise. The matrix Avg, €
R"f*"f yields the average of consecutive vector entries and [ns] € R>*? de-
scribes a skew symmetric matrix that, multiplied with a vector, yields the cross
product with the face normal n of the planar projection f. It can be obtained by
normalizing the Darboux vector a5 € R? of the skew symmetric (3 x 3) matrix

_gT
Ay = E;By. (2.41)
The norm of ay is exactly the magnitude of the polygons’ vector area, therefore
leading to
af
n, = —. (2.42)
P

For a more detailed derivation of Equation (2.40) we refer to the original paper
[GBD20] or the survey paper by Bunge and Botsch [BB23].

Flat, Sharp and Projection Operator Based on their definition of the gradient
operator, de Goes et al. derive an alternative expression to Alexa’s and Wardet-
zky’s choice for the inner product matrix on 1-forms. Involved in the process
are their discrete polygon extensions of the so-called sharp f and flat b operators,
both discretized as Vjﬁ, € R>"f and ijf € R" 3 respectively.
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As pointed out in Lemma 2 of the original paper, their sharp operator yields
Gfuf = V]ﬁ(dfu]c (2.43)

for any scalar function uy and is therefore able to reproduce a discrete version
of the smooth relation Vu = (du)* between sharp and gradient operator.
The matrix V’ maps a 3D vector to its tangential part and then computes its
counter-clockwise circulation along the edges of the polygon, giving us a dis-
crete 1-form. The sharp operator V* inversely maps the values of a discrete
1-form defined on the polygon back to a single tangent vector per face. How-
ever, in contrast to the continuous setting, the operators defined by de Goes
et al. are not the exact inverses of each other. Inspired by the virtual element
method [VBM13], they mitigate the effect by defining a so-called projection op-
erator

Py =1y — V}V;
I; € R"™" being the identity matrix, that measures the error of V? and Vjﬁ(
being inverse to each other. Basically, by first sharpening a 1-form g to a tangent
vector that is then flattened back to a representative 1-form g, the projection
operator eliminates the components of g that would result in a tangent vector
after applying ng.

e R*", (2.44)

Stiffness Matrix Equipped with these operators, de Goes et al. [GBD20] de-
fine their local inner product matrices acting on 1-forms as

My = |f| VETVE + A PIP, (2.45)

which can be assembled into the global inner product matrix M acting on the
whole mesh. The matrix My maps the involved 1-forms to their respective tan-

gential vectors with the help of the sharpening operator V&c, resulting in their
dot product. The potential rank deficiency is mitigated through the second cor-
rection term regulated by a parameter A > 0. As for Alexa and Wardetzky, this
regularization is necessary to guarantee that the inner product matrix is strictly
positive definite, which can then be used as before to define the local discrete
Laplace operator

Sy =diMgdy. (2.46)

2.3.3 Numerical Evaluation

In this section, we introduce a number of different quantitative computer
graphics applications for both surface and volume meshes. This test frame-
work will allow us to analyze the accuracy and quality of the different
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operators presented in this thesis in a consistent manner. Furthermore, we
preliminarily want to evaluate the influence of the respective parameters A
involved in the introduced methods of Alexa and Wardetzky [AW11] and
de Goes et al. [GBD20] and how they affect the quality of the inner product
matrix. Therefore, we analyze a selection of values besides the recommended
choices of the authors. The overall most accurate parameters will then be
used in the upcoming evaluation sections of this thesis. Since both DEC
operators are not defined for volume meshes, the introduced volumetric tests
will only become relevant for the other operators introduced in later chapters
of this thesis. Figure A.1 illustrates a selection of the test meshes used in our
evaluation.

Poisson Equations We analyze the convergence behavior of the different
Laplacians by solving the Poisson equation —Au = f with Dirichlet boundary
conditions on various refined tessellations of the unit square and cube. We
use the 2D and 3D Franke test functions [Fra79] for the right hand side f and
solve the discrete system

Su = Mb, (2.47)

with b € RIVI containing the values of the analytic Laplacian Af of the re-
spective test function sampled at the vertices. The solution u € RVl is then
compared to the analytic values of f. The formulas of the Franke test functions

are
3 _0x-22+(9y-22 3 _ (9x+1)Z_ 9y+1
fo(xy) = 1 ! g v
(2.48)
I e
2 5
and

3 (9x=2)2+(9y—2)24(92—-2)2 3 (9x+1)2 9+l 941
i

fap(x,,2) =3¢ + L—Le’T*T*T
1

i

 (9x=7)24(9y—3)2+(92-5)2
1

e (2.49)

L e (ox—42—(9y-7)~ (9257
- .

Figure 2.1 showcases the L; error rates, computed as the root-mean-square er-
ror (RMSE), from solving the Franke Poisson system on different planar sur-
face meshes. Both DEC Laplacians can reproduce the expected quadratic con-
vergence rate across all tessellations in the planar setting. In terms of accuracy,
both operators produce high-quality results for A = 1 on quad and Voronoi
meshes. On concave surfaces, de Goes et al. with parameter A = 0.5 yields
the best results and surpasses the previous optimal choice of A = 1. We want
to highlight that both Laplacians, independent of the chosen hyper-parameter,
reproduce the cotan Laplacian on triangulated surfaces.
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[Alexa et al. 2011 A = 0.5] == [deGoes et al. 2020 A = 0.5]
=afe= [Alexa et al. 2011 A = 0.1] == [deGoes et al. 2020 A = 0.1]

Figure 2.1: L, error in log-log scale of the Poisson system solved for Franke’s test func-
tion on planar grids. Both DEC Laplacians are equivalent to the cotangent Laplacian
on triangles, independent of the chosen hyperparameter. This leads to the overlapping
lines for the top left plot.

Spherical Harmonics The eigenfunctions of the Laplacian on the unit sphere
S? are called the spherical harmonics Y":S 2 — R with eigenvalues —I(I + 1).
Using the fact that Y;" are eigenfunctions, we can solve for u € RIVI:

u=M"lsy”
& Mu = Sy/

(2.50)
(2.51)

and rescale the solution with the respective eigenvalue. The entries of y]" €
RVl denote the function values of Y/" sampled at the vertices. We can measure
the error of u being an eigenfunction to the presented Laplace operators by
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Figure 2.2: L, error in log-log scale for the Poisson solve of the spherical harmonic
function Y3 with eigenvalue —12 on different tessellations of the unit sphere.

for a selected frequency with non-zero eigenvalue. The L? norm is computed
with respect to the inner product induced by the mass matrix M, which is de-
fined as

evaluating

2
m

et (2:52)

M

V|3 = v Mv (2.53)

for a vector v € RV,
Figure 2.2 displays the deviation of the solution from the analytic function val-
ues of

1 /1
Yi(xy,2) = ;| — (= vz (2.54)
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with eigenvalue —12. In this setting, choosing lower A for the stabilization term
leads to the most accurate results, with A = 0.5 being one of the most consistent
options for both operators. For more challenging tessellations like the concave
sphere, one can observe that the convergence rate slightly stagnates, but the
Laplacians still display a consistent improvement under mesh refinement.

Geodesics in Heat In order to assess the quality of the divergence and gradi-
ent operators, we evaluate them in the context of the geodesics in heat method
presented by Crane et al. [CWW13]. Given the i-th unit vector e; € RVI, we
can obtain the geodesic distances from a vertex v; to all other vertices in the
mesh in three steps: First we solve the heat flow with a fixed small time-step &
for the vector u € RII:

(I—eL)u =e;
o (I+eM1S)u=e; (2.55)
< (M +¢eS)u = Me,.

Then we compute the normalized gradients of the solution vector through

g = oW (256)

P ll(Gu

In the last step, we solve the Poisson equation
Sv = Dg (2.57)

for the geodesic distances v € RIVI and shift the solution by the offset of the
value associated with vertex v; to zero. Note that, depending on the employed
Laplacian, the number and dimension of the gradient vectors will vary in
the upcoming chapters. For example, the methods introduced by Alexa and
Wardetzky and de Goes et al. [AW11; GBD20] obtain both three-dimensional
gradient vectors per polygon face. Additionally, the normalization step in
Equation (2.56) changes depending on the chosen method. While methods
with a geometrically motivated gradient can normalize the vectors by their
respective Euclidean length, like de Goes et al.[GBD20], the method by Alexa
and Wardetzky [AW11] needs an alternative approach. As pointed out by
Crane et al. [CWW13], interpreting the coboundary operator d as gradient
leads to discrete 1-forms associated with the halfedges, which cannot be
directly normalized. However, since M; (see Equation (2.35)) gives us an
inner product matrix for 1-forms, they propose to use

uTSfuf
IVul, =1/ -2

]

(2.58)
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Figure 2.3: L; error in log-log scale of the Geodesics in heat method on planar grids
with quads (top), concave polygons (center) and Voronoi faces (bottom).

22



Ly Error

1073

10°

Ly Error

Ly Error

2.3 POLYGON LAPLACIANS BASED ON DISCRETE EXTERIOR

Mean edge time step

CALCULUS

Maximum diagonal time step

Quad Sphere Quad Sphere
10°
b
1073
10 !
Hexagonal Sphere Hexagonal Sphere
37 100
oo
*X 10—1-,,&
\\\:\\*\\ *\\\ \‘\*\\ =
\“~u__~‘ -~ Sse *\sﬁhNN
TeeswoIIzip| 1072 U T
\\\*~~
—s
-3
1 10 1
Concave Sphere Concave Sphere
\\ ; 100 \
oo *~‘~
o TT T::?\‘ """" 104'mt::;\ S
*-“~:::¥‘_-__* ______ * ~~~‘k\\ NT\*N
ikl S N S~o
——— \\*‘\ \\*NN N
10-2 B
T ——x
1073
10! 10"

[Alexa et al. 2011 A = 2]

[Alexa et al. 2011 A = 1]

[Alexa et al. 2011 A = 0.5]
=fe= [Alexa et al. 2011 A = 0.1]

Inverse mean edge length

[deGoes et al. 2020 A = 2]

[deGoes et al. 2020 A = 1]
== [deGoes et al. 2020 A = 0.5]
== [deGoes et al. 2020 A = 0.1]

Figure 2.4: L; error in log-log scale of the Geodesics in heat method on unit spheres
with quad (top), hexagon (center) and concave faces (bottom).
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asnormalization term by assuming that Vu is constant over each face and there-
fore

ul'S uy — /f IVul? dA = [ Vul [f]. (2.59)

The time step ¢ involved in the first step of the heat method (Equation (2.55))
is a debated subject. As pointed out by Crane et al. [CWW13], the discrete
setting does not follow the expected rule that smaller time steps necessarily
lead to more accurate results. However, too large time steps lead to a smoothed
approximation of the distances. We therefore compare the behavior of the two
most common choices:

e The squared mean edge length, as proposed by Crane et al. [CWW13].

e The squared length of the longest face diagonal, as suggested by de Goes
et al. [GBD20; GDM+16].

Figure 2.3 and 2.4 show the deviation of the obtained geodesic distances to the
Euclidean distance in the plane and the great-circle distance on the unit sphere.
In order to provide a less biased evaluation, we compute the L; errors for 162
(planes) and 8> (spheres) uniformly sampled points and then report the mean
of these errors. Using the mean edge length as time-step ¢ leads to more sig-
nificant error fluctuations for both DEC methods, especially for progressively
larger A. The maximum face diagonal stabilizes these deviations, achieving the
most impact for a high hyper-parameter. In general, de Goes et al.’s method for
A = 0.1 has the lowest error rates, independent of the chosen time step. Addi-
tionally, the definition of a geometric gradient operator improves the accuracy
of de Goes et al.’s method compared to the algebraic coboundary operator used
for Alexa and Wardetzky’s Laplacian. However, choosing larger values for A
affects both methods negatively. Still, given that A controls the influence of the
stabilization term for both methods, it cannot be chosen to be indefinitely close
to zero since this would lead to Laplacians with too large kernels and, therefore,
spurious modes.

In light of the above, we can say that the suggested hyper-parameter from the
original paper and the parameter that yielded the best results in our test cases
slightly differ for both methods. For Alexa and Wardetzky, this corresponds to
A = 2 (suggested) and A = 0.5 (optimal). In the case of de Goes et al., we con-
sider A = 1 (suggested) and A = 0.1 (optimal). The results vary depending
on the selected test mesh or application, suggesting that alternative hyperpa-
rameter configurations tailored to specific mesh types or applications could, of
course, further improve the results for the respective DEC operator. However,
in the upcoming chapters, we will compare the derived polygon operators to
these four specific choices, to provide a slightly less crowded numerical evalu-
ation of the different Laplacians.
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THE LINEAR VIRTUAL REFINEMENT METHOD

When working with general polygon meshes, the finite element method (Sec-
tion 2.2) cannot be applied directly for two reasons. First, when the polygon
is not planar, it is unclear what the underlying surface is over which functions
should be integrated. Second, even for simple planar polygons, it is unclear
how to associate basis functions with the mesh’s vertices.

A simple approach would be to triangulate all the polygons, define a piece-
wise linear integration domain, and use the linear Lagrange basis functions to
define the finite elements. This would have the advantage of defining a finite
elements system whose dimension equals the number of vertices in the input
mesh. Unfortunately, introducing diagonal edges would also break the sym-
metry structure of the polygonization (e.g., in quad meshes where edges are
aligned with principal curvature directions).

An alternative approach would be to refine the polygon mesh by introducing
a new vertex in the middle of each face. This would preserve the symmetry
structure but would come at the cost of an increase in the dimension of the finite
elements system. Additionally, as we show in Section 3.3, such an approach can
result in poor performance due to the introduction of positive edge weights in
the stiffness matrix.

We propose an in-between approach —introducing a virtual vertex in the middle
of each face, expressed as an affine combination of the face’s vertices. Naively,
the new vertex produces a refined triangle mesh with a finite elements sys-
tem given by the hat basis functions, as before. However, we then coarsen the
refined system, expressing the vertex functions on the coarse mesh as linear
combinations of the linear Lagrange basis functions on the finer one.

This new system has a dimension equal to the number of vertices in the orig-
inal polygon mesh (preserving the finite elements system dimension). It has
the property that basis functions have overlapping support only if the associ-
ated vertices lie on a common face (defining a sparse system that preserves the
symmetry structure). A further advantage of our approach is that we easily
obtain a consistent factorization of the stiffness matrix as the product of diver-
gence and gradient matrices.

Individual Contribution [ developed the linear virtual refinement method in close
cooperation with Philipp Herholz, supervised by Mario Botsch and Misha Kazhdan.
While the theoretical derivations were a collective effort, I was responsible for imple-
menting the linear virtual refinement method and all quantitative and qualitative eval-
uations. Additionally, I am responsible for extending the method to polyhedral elements.
Misha Kazhdan made the connection between the linear virtual refinement method and
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discrete exterior calculus, and Philipp Herholz provided insights into the relationship
between our method and the operator of Alexa and Wardetzky.

Corresponding Publication This chapter is based on the following publication:

Bunge, A., Herholz, P., Botsch, M., and Kazhdan M. (2020). “Polygon Laplacian
Made Simple.” Computer Graphics Forum, 39(2):303-313.

3.1 RELATED WORK

Laplacians for Triangle Meshes The main goal when constructing a discrete
Laplacian is to retain as many properties from the smooth setting as possi-
ble. While the classical cotangent Laplace operator [Mac49] is positive semi-
definite, symmetric, and has linear precision, it fails to maintain the maximum
principle. As a consequence, parametrizations obtained with this discretiza-
tion can suffer from flipped triangles. In contrast, the combinatorial Laplacian
[Tau95; Zha04 ] guarantees the maximum principle while failing to have linear
precision. Bobenko and Springborn [BS07] introduced a discrete Laplacian
based on the intrinsic Delaunay triangulation. While guaranteeing the maxi-
mum principle, this operator is defined over an intrinsic mesh with different
connectivity. Recently, an efficient data structure for the representation of these
meshes has been introduced [SSC19a]. The idea of intrinsic triangulations
does not extend to the case of non-planar polygon meshes due to the lack of
a well defined surface. Other discretizations include the Laplacian of Belkin et
al. [BSWO08] that provides point-wise convergence and the octree-based Lapla-
cian [CLB+09] defined to support multigrid solvers. In general, Wardetzky et
al. [WMK+07] have shown that there cannot exist a discretization that fulfills
a certain set of properties for all meshes, explaining the variety of approaches
in the literature.

Laplacians for Polygon Meshes There have been a couple of approaches
for discretizing differential operators on polygonal meshes. As discussed
in Section 2.3, Alexa and Wardetzky [AW11] circumvent the problem that
(non-planar) polygons in 3D do not bound a canonical surface patch by
considering the projection of the polygon onto the plane that yields the
largest projection area. Their polygon Laplace combines an MFD-based inner
product [BLS05] with an algebraic kernel stabilization, regulated with a scalar
hyper-parameter. A drawback of this discretization is that it requires the
suitable choice of a scalar parameter, and that the potentially large number
of positive non-diagonal entries in the stiffness matrix violates the discrete
maximum principle [ WMK+07].

Herholz et al. [HKA15] extend the definition of desirable properties of dis-
crete Laplacians to polygon meshes, where they characterize polygon tessel-
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lations that admit a “perfect” operator with only non-negative weights. Sharp
et al. [SSC19b] handle potentially non-planar polygons by deriving a version
of the “connection” Laplacian, which, in contrast to the standard expression
as the divergence of the gradient, is given by the trace of the second covariant
derivative. This operator fulfills many of the same properties as the cotan Lapla-
cian and enables the diffusion of vectors from one tangent space to another on
curved domains.

De Goes et al. [GBD20] go beyond the Laplace operator and generalize a whole
set of discrete differential operators to general polygonal meshes. They extend
the approach of [AW11] by defining a new discrete gradient operator, which
can be interpreted as a generalization of mimetic finite differences [BLS05] and
the virtual element method [VBM13]. Using the weak form of the cogradient
operator and the divergence theorem, they bypass the need for an interpolation
of the non-planar polygon surface.

Similarly, Ptackova and Velho [PV21] presented an extended version of discrete
exterior calculus for general polygon meshes. They define essential operators
like a polygonal wedge product and Hodge star operator, allowing them to
derive new versions of the Lie derivative, codifferential, and Laplace-de Rahm
operator.

Virtual Refinement in Geometry Processing To extend the cotangent Lapla-
cian to polygon meshes, we refine the mesh by inserting a virtual vertex for
each face and using these to tessellate each polygon into a triangle fan. Similar
to recent work on Subdivision Exterior Calculus [GDM+16], we define a pro-
longation operator expressing functions on the coarser polygonal mesh as linear
combinations of the triangle hat basis functions on the finer mesh. Then, lever-
aging the Galerkin method [Fle84], we define the Laplacian on the polygon
mesh by coarsening the Laplacian from the triangle mesh. As in the method of
de Goes et al. [GDM+16], this gives us the benefit of working over a refined tri-
angle mesh (where discrete Laplacians are well understood) without incurring
the computational complexity of working on a finer mesh.

Sample Applications Applications of Laplacians include the approximation
of conformal parametrizations [DMAQ2], mesh deformation [SCOL+04], and
signal processing on meshes [CRK16], to name a few. Replacing the usual
cotangent Laplacian with a Laplacian defined on polygon meshes directly en-
ables many of these algorithms to work in this more general setting. However,
the quality of the results depends on the specific construction and properties of
the polygon Laplacian. In this chapter we compare different variants with re-
spect to a set of applications including parametrization [Flo97; GGT06], mean
curvature flow [DMAO02; KSBC12], spectral analysis [LZ10], and geodesics in
heat [CWW13].
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3.2 POLYGON LAPLACIAN

Our approach for defining a polygon Laplacian proceeds in two steps. First, we
refine the polygon mesh to define a triangle mesh on which the standard cotan-
gent Laplacian is defined. Then, to obtain a Laplacian on the initial polygon
mesh, we use the Galerkin method to coarsen the cotangent Laplacian, which
was previously introduced in Section 2.2.1. In the following we briefly review
the Galerkin method [Fle84].

3.2.1 The Galerkin Method

Assume that we are given two finite-dimensional nesting function spaces F C
Ff. Given a prolongation operator P injecting the coarser space into the finer,
P: F¢ — Ff, and given a symmetric positive semi-definite operator Q defin-
ing a quadratic energy on the space of functions, we can define a symmetric
positive semi-definite operator on the space F/ through restriction

Q¢ y) :==Q(pp), Ve peF. (3.1)

In a similar manner, we can define a symmetric positive semi-definite operator
Q° on the space F¢.
The Galerkin method tells us that the operators are related by

Q=P oQfoP, (3.2)

where P* is the dual of P. In particular, given bases for F¢ and F/ and letting
P, Q¢, and Qf be the matrices representing the operators with respect to these
bases, we have

Q°=PrP"-Qf P (3.3)
3.2.2 Construction of the Finite Elements System

Given a polygon mesh M = (V, £, F), we construct our finite elements system
by defining a refined triangle mesh Mt = (Vr, T). Vertices in the refined mesh,
Vr, are obtained by introducing a new vertex, v|y, ;, for every polygon f; € F
and setting the position of v}y ; to an affine combination of the positions of
vertices in f;

X|V|+j = Z w]-l-xi, with 2 wﬁ =1. (34)

viEf; v;iEf;

Triangles in the refined mesh, 7, are obtained by replacing each face f; € F
with the triangle fan connecting the inserted vertex vy, ; to the edges in f;,
as can be seen in Figure 3.1. Using the refined triangle mesh, we can define
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X6 Xs X4 X6 X X4
X1 X3 X1 X3

X> X2

Figure 3.1: Spanned triangle fan on the virtual mesh after inserting the virtual vertex
X|y|4j at the j-th face.

the stiffness matrix, $2 € RIVrI*Vl, using the standard cotangent weights of
Equation (2.17). The affine weights w; = (w1, ..., Wy f) of each face can be
aggregated into a local (¢ + 1) x ny matrix

P{.: w; fori:nf—l—l (35)
/ (517- otherwise,

which can be assembled into a global prolongation matrix P € RVTI*IVI with
1 ifi=j,
Pij = wy; ifi=|V|+kand vj € fr, (3.6)

0 otherwise.

And finally, using the Galerkin method, we obtain an expression for the coars-
ened polygonal stiffness matrix as

S° = PTS”P. (3.7)
We use the same approach to obtain the coarsened polygonal mass matrix
M® = PTM“P, (3.8)

but in addition to restricting the refined triangle mass matrix M*, we also lump
it to a diagonal matrix:

MC = lump (PTMAP> with (3.9)

Y MO ifi =,

(3.10)
0 otherwise,

lump(Mo)ij = {

setting the diagonal entry to the sum of the entries in the row.
Note that our stiffness matrix has non-zero entries if the corresponding vertices
share a face, not just an edge. Also note that solving a linear system using our
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operators differs from solving the system on the refined mesh and only using
the solution values at the original (i.e., non-virtual) vertices. Our approach cor-
responds to solving the system using a coarser function space. The alternative
corresponds to sub-sampling a solution obtained over a refined function space,
which could result in aliasing.

3.2.3 Choice of Virtual Vertex Position

Choosing different virtual vertex positions, we provide a framework for defin-
ing a whole family of polygon Laplace operators. While many choices are pos-
sible we would like the virtual vertex to fulfill a set of properties in order to
yield a geometric Laplacian:

e The vertex should be efficient to compute and uniquely defined.

e Since the choice of virtual vertex defines the surface of the polygon, we
would like to find a point giving small surface area.

e For planar polygons, the vertex should be inside the polygon.

e To achieve linear precision, the virtual vertex should be an affine combi-
nation of polygon vertices (see Equation (3.4)).

A straightforward choice is to use the centroid of the polygon vertices. However,
for non-convex (planar) polygons this point can be located outside the polygon.
Moreover, it will be biased by an uneven distribution of polygon vertices.
Another choice is to find a point minimizing the area of the induced triangle fan,
which is related to the minimization of the Dirichlet energy. Unfortunately, this
point is not uniquely defined. For example, for convex planar polygons, the
total area will be identical for every virtual vertex inside the polygon. Further-
more, since area is non-linear in the position of the virtual vertex, less efficient
iterative solvers, e.g. Newton’s method, are required to compute the position
of the virtual vertex.

Instead, we opt for the minimizer of the sum of squared triangle areas of the in-
duced triangle fan. Introducing a virtual vertex with position x; into an 7 s-gon
with vertex positions (X, ..., Xx f) allows us to define the triangle fan with n f
triangles (x;,X;;1,Xs), where indices are interpreted modulo 4. The position
of the virtual vertex, x f € R3, is then defined as the minimizer

n
f
. 2

Xf = argmin Zl area(x;, X;+1,X)". (3.11)

1=
Compared to the minimizer of the area, the squared area minimizer has two
advantages. First, the solution is unique even for planar convex polygons. Sec-
ond, using the squared area, the objective function becomes quadratic in x;.
Also, in contrast to the centroid, the minimizer of the squared area is almost
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always positioned in the interior of a planar, star-shaped polygon, even when
the polygon is not convex.

While the position of our virtual vertex is unique, its expression as the linear
combination of polygon vertices usually is not. Since linear precision requires
X to be an affine combination of the polygon’s vertices (see Section 3.2.8), find-
ing the position of the virtual vertex can be formulated as a minimization di-

rectly over the weights w = (wy, .. ., wnf)T:

ny ny 2
Wf = arg II%\lrn Z area (Xi/ Xi+1, Z ZU]X]>

=1 ]:1
nf
such that Z w; = 1.
j=1

(3.12)

Noting that when 7¢ > 3 the system is under-constrained (with multiple affine
weights defining the same unique squared-area minimizer x), we add the con-
straint that, of all the weights w defining the minimizing position x¢, we prefer
the one with minimal Ly-norm ||w||. This encourages the weights to be as uni-
form as possible, allowing each polygon vertex to contribute equally. These
affine weights can be obtained by solving a single linear system, derived in Ap-
pendix A.2.

It is tempting to add non-negativity constraints w; > 0 to Equation (3.12) since
this would yield convex weights that guarantee a maximum principle for the
virtual vertex and prevent positive coefficients in the coarsened stiffness matrix
S (see Equation (3.7)) as long as they do not appear in S®. However, this
comes at the cost of solving a quadratic program with inequality constraints.
We compare our choice of virtual vertex—minimizing the sum of squared tri-
angle areas through affine weights—to the other options (centroid, min. area,
convex weights) in Section 3.3.2.

3.2.4 Implementation

Implementing our system is simple, especially if code for the computation of
the cotangent Laplacian is already available. Our implementation is based on
the PMP-Library [SB19]. Algorithm 1 illustrates the procedure. Initially we set
the prolongation matrix P to the identity of size |V| x |V| (line 3), reflecting the
fact that all original vertices appear in the refined mesh. We then loop over all
faces, collecting all vertex positions of the polygon, finding affine weights for
the optimal virtual vertex, and constructing this point (lines 5-7, Section 3.2.3).
Next we compute the area and cotangent weights for the resulting triangle
fan and aggregate them in M* and S* (lines 9-10, Section 2.2.1). The final
operators are constructed by multiplying the matrices M* and S* defined on
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the refined mesh with the prolongation matrix and its transpose (line 12, Sec-
tion 3.2.2).

Data: Mesh vertices V and faces F
Result: Mass matrix M©, stiffness matrix S°.
SA — olVrIx|Vrl
M2 = olVrIx[Vrl
P = 1IVIxV|
foreach f € F do
Xy < getVertexPositions(f);
wy < findVirtualVertexWeights (Xy);
Xf < X}—Wf,'
P < appendWeightRow (P, f, wy);
M? < M* + buildTriangleFanMassMatrix ( f, X £,X f) ;
S% < S 4 buildTriangleFanCotan ( f, Xf, xf) ;
end
return M® = PTM“P, S° =PTS*P
Algorithm 1: Assemble polygon stiffness and mass matrix.

3.2.5 Gradient and Divergence

We are also able to factor the stiffness matrix as the product of divergence and
gradient matrices. As described in Section 2.2.1, we can obtain a matrix expres-
sion for the gradient and divergence operators over the refined mesh, G* and
D and use those to factor the refined triangle stiffness matrix

S& = DAGA. (3.13)

Coarsening, we obtain a factorization of the polygon stiffness matrix in terms
of coarse polygon divergence and gradient matrices

S° =P'D” G“P. (3.14)
—DO —GO

Note that the derived gradient operator, G® = G“P, is a map from functions
defined on the vertices of the original polygon mesh to tangent vector fields that
are constant on triangles of the refined mesh. These refined triangles, however,
can uniquely be identified with half-edges of the original polygon mesh, so
that the refined triangles never have to be constructed explicitly. Hence, the
gradient operator maps from function values at vertices to vectors at half-edges
(and conversely for the divergence operator, D° = PTD?*).
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3.2.6 Finite Elements Exterior Calculus

An alternative approach is to define differential operators by extending Finite
Elements Exterior Calculus to polygon meshes. We do this by using our coars-
ened basis to define Whitney bases for higher-order forms and then using these
higher-order bases to define the Hodge star operators.

Recall Given a basis of zero-forms {¢;} forming a partition of unity, one
can define Whitney bases [Whi57; AFW06] for 1-forms {¢;;} (withi < j and

supp(¢;) Nsupp(@;) # @) and 2-forms {¢;j} (withi < j < k and supp(¢;) N
supp(¢;) Nsupp(¢x) # D) by setting:

¢ij = @i-do; — ¢;-de;,

Pijk = 2 (@i - doj N — @j - do Ndor + Py - do; Adg;) .

The exterior derivatives are then defined using the combinatorics

1 i=1lj=m

“Li=k 1 j=Lk=m

0 _ . 1 o 7

d(i]-)k = 1 j=k , d(ijk)(lm) =1 i=1k (3.15)
0 otherwise

0 otherwise

and the discrete Hodge stars are defined using the geometry

= (@i, 9j)), (3.16)
= (@ij, px1)), (3.17)
z]k )(Imn) <<q0ijkr golmn»/ (318)

with ((, -)) denoting the integral of the (dot-)product of k-forms. Using the lin-
ear Lagrange basis on a triangle mesh, the basis functions are linear within each
triangle so computing the coefficients reduces to integrating quadratic polyno-
mials over a triang]e.

Prolonging Higher-order Forms Given the linear Lagrange basis on the re-
fined triangle mesh {y1, ..., ¢y, |}, defining a prolongation operator P is equiv-
alent to defining a coarsened basis {¢1, ..., ¢y} on the triangle mesh, with

Pj = ZszlPi- (3.19)

As both bases form a partition of unity, we can define Whitney bases for higher-
order forms. In doing so we get:

9ii =Y PPy and @i = Y PiPuiPutimy, (3.20)
k1 Im,n

33



THE LINEAR VIRTUAL REFINEMENT METHOD

which gives prolongation operators for 0-, 1-, and 2-forms:

P) =Py, (3.21)
Pl (1) = PirPjmPin (3.23)

This allows us to define Hodge star operators for the coarsened basis through
prolongation:
** = (PF) Tk pk, (3.24)

where ** is the discrete Hodge star for k-forms defined using the coarsened
basis and %% is the discrete Hodge star for k-forms defined using the refined
linear Lagrange basis.

In particular, this gives a factorization of the stiffness matrix as

SO = (d%T - «!.d° (3.25)

with gradients represented in terms of differences across polygon edges/diag-
onals.

3.2.7 Laplacian on Volume Meshes

The previously described method can be intuitively extended to arbitrary poly-
hedral meshes, but instead of virtual triangles, the mesh M will be refined into
virtual tetrahedra. The first steps are analogous to the surface case, meaning that
all faces f € F of a given polyhedron ¢ € C are refined into triangles with vir-
tual vertices placed at the point that minimizes the sum of squared triangle
areas (see Equation (3.11)). To span the virtual tetrahedra, we introduce an
additional vertex x. inside of each cell, which is, similar to the surface case, the
affine combination of the cells’ refined faces vertex positions

Xe= Y. wix, with Y w=1 (3.26)
v;€V(0c) v;€V(0c)

Here, V(dc) refers to the set of vertex indices that lie on the refined boundary
of the polyhedron c. The position of x, is defined as the minimizer of the sum
of squared tetrahedron volumes

) 2
Xc = argmin 2 vol (x;, Xj, Xk, x)°, (3.27)
tijkGaC

with #;; being the refined triangles along the cell’s boundary. As for surfaces,
this minimization problem can be expressed with respect to a set of affine
weights w, € RIV(%) and assembled into a local prolongation matrix P°. The
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only real difference of this approach is that the global prolongation P is now
divided into a two-step process, with the “surface” prolongation matrix Pr
inserting the virtual face points for all f € F and Pc the cell points for all
c € C, respectively, giving us

P = P.P;. (3.28)

The polyhedral stiffness and mass matrix are then obtained as in Equation (3.7)
and Equation (3.8), with the slight change that the refined matrices are the
volumetric discretizations of the cotangent formula (see Section 2.2.2).

3.2.8 Properties of the Operator

One goal of our construction is to preserve the beneficial numerical properties
of the cotangent Laplacian. The symmetry, positive semi-definiteness and
null space properties follow for both surface and volume methods directly
from our construction of the stiffness matrix S° = PTS2P, since the refined
(cotangent) stiffness matrix S* has these properties and since the prolongation
matrix P has full rank. For linear precision we require (S°u); = 0 whenever
vertex v; is not part of the boundary, all incident polygons f; 5 v; are copla-
nar, and the values of u in the one-ring of v; are obtained by sampling a linear
function on the plane. To see that this is the case, we note that by constrain-
ing ourselves to use affine weights in defining the prolongation, we ensure that
prolonging u to the finer mesh, the values of u® = Pu sample a linear func-
tion at all vertices of the fan triangulations incident to v;. Since the cotangent
Laplacian has linear precision, this implies that S®u” is zero at v; and all virtual
centers v|y|; with f; 5 v;. Since these are precisely the entries at which the i-
th column of P is non-zero, it follows that (PTS%u®); = 0. Or, equivalently,
(S°u); = 0. Given that the cotan Laplacian for volume meshes also satisfies
linear precision, the same arguments apply for polyhedral meshes. It follows
that if the initial mesh M is a triangle or tetrahedral mesh, then the derived
stiffness matrix S° is the standard surface of volume cotangent Laplacian. This
is because using affine weights, the finite elements basis defined on the coarse
mesh through prolongation are precisely the linear Lagrange elements.

The property of strictly negative off-diagonal values does not hold for the cotan-
gent Laplacian and consequently cannot extend to our construction, resulting
in the potential violation of the maximum principle. The lack of negativity
is also present in the definition of [AW11] and [GBD20], however, our opera-
tor tends to contain fewer positive off-diagonal coefficients, which will be dis-
cussed in the upcoming evaluation.
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3.3 EVALUATION

In this section, we evaluate the Laplacian based on the linear virtual refine-
ment method in a variety of different qualitative and quantitative geometry
processing operations. After providing some visual examples in which a poly-
gon Laplacian can be used, we will analyze the effect of the placement of the
virtual vertex applied to a selection of polygon meshes (Figures 3.2 and 3.3).
Additionally, we evaluate the difference in accuracy between our method and
the triangulation of the original polygon mesh. For this, we use a selection of
different approaches. First, we triangulate each (potentially non-planar, non-
convex) ny-gon into 11y — 2 triangles without inserting an extra point, and then
use the standard cotangent Laplacian for triangle meshes. Secondly, using the
dynamic-programming approach of Liepa [Lie03], we find the polygon trian-
gulation that minimizes the sum of squared triangle areas (similar in concept to
our squared area minimization). We also experimented with the triangulation
that maximizes the minimum triangle angle (similar to planar Delaunay trian-
gulations). While the latter yields better-behaved cotangent weights, it tends
to produce flips or fold-overs for non-convex polygons, so we used the former
for most experiments.

In the second part of this chapter, we compare our results to the ones obtained
with the polygon Laplacians based on the work of Alexa and Wardetzky
[AW11], de Goes et al. [GBD20] and Martin et al. [ MKB+08], using the values
for their respective parameters A evaluated in Section 2.3.3. For the harmonic
shape functions [MKB+08], the number of chosen kernels and control points
strongly affects the results on our chosen test meshes. We follow the evaluation
of our survey paper [BB23] and use a ratio of 20/80 for edge kernel/collocation
points for surface meshes and the recommended 3/9 points per edge and
10/30 per face for the volumetric tessellations. The choice was also influenced
by the numerical costs involved in using more samples, explaining the lower
sample sizes for volume meshes. The triangles and tetrahedra used for the
numerical integration are the same as the virtual elements used for the virtual
refinement method. Given that the integration of the shape functions is not
exact, using a more elaborate tessellation technique could further improve the
results.

3.3.1 Qualitative Examples

Before we analyze the varying numerical aspects of our operator, we provide
some qualitative examples in which a polygon Laplacian can be used, to high-
light the flexibilty and stability of our approach. All examples use the men-
tioned minimizer of squared triangle areas as virtual vertex and the norm min-
imizing affine weights for the prolongation.
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Figure 3.2: Spherical meshes used for within the evaluation.
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Figure 3.3: Planar meshes used for the evaluation of geodesic distances, including
non-convex and non-star shaped tessellations.

Figure 3.4: Stress test for smoothing on a noisy sphere (left). After one (center) and
ten iterations (right).
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Conformalized Mean Curvature Flow A common approach for smoothing
meshes is to use implicit integration to solve the diffusion equation [ DMS+99].
In our application we use the conformalized Mean Curvature Flow introduced
by Kazhdan et al.[KSBC12], which obtains the coordinates of the mesh vertices
at the next time-step, X!*¢ from the coordinates at the current time-step, X,
iteratively solving the linear system

(M? + eS§) X te = MPX! (3.29)

with ¢ the time-step, Sg the initial stiffness matrix, and M{ the mass matrix
at time f. After each iteration the mesh is translated back to the origin and re-
scaled to its original surface area. Figure 3.4 demonstrates the resilience of our
Laplacian to noise and non-planar as well as non-convex faces. The flow can
recover the spherical shape after one iteration and converges after 10 iterations.
Figure 3.5 shows a second example of this flow after one and ten iterations
respectively. The mean curvature is color-coded and shows that the mesh cor-
rectly converges to a sphere when using our operator. This example shows that
even extreme differences in polygon scale are handled correctly.

Parametrization Another potential application for the Laplacian is mesh pa-
rameterization. Traditionally, the goal is to find a correspondence between
a discrete surface patch (possibly with holes) and a homeomorphic planar
mesh through a piecewise linear map. Figure 3.6 illustrates an example of a
conformal parameterization based on Mullen et al.’s [MTA+08] spectral free-
boundary parametrization, extended to polygon meshes. We compare our op-
erator to a result obtained with the Laplacian based on Alexa and Wardet-
zky [AW11]. In general, both operators perform well in this application, but
visual differences can still be observed.

Geodescis in Heat As described in Section 2.3.3, Crane et al. [CWW13] pro-
posed the heat method for computing geodesic distances from a selected vertex
v; to all others on the mesh. Figure 3.7 shows a result of geodesics in heat with
highly anisotropic polygons, on which our operator yields smooth geodesic
distances.

3.3.2 Comparison of Virtual Vertex Choices

As stated in Section 3.2.3, there are numerous options to compute the virtual
vertices and their weights needed for the linear virutal refinement method.
We compare the performance of several alternative constructions, using both
lumped and un-lumped mass matrices, in a number of applications. Addition-
ally, we compare to explicit triangulations of the polygon meshes such that that
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Figure 3.5: Visualization of the mean curvature flow on a quad mesh. Mean curvature
is color coded.

Figure 3.6: Parametrization of the right half of a quadrangulated monkey head. The
result of [AW11] (left) is similar to ours (right), but our operator has slightly lower
conformal distortion.
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Figure 3.7: Geodesic distances computed on a quad mesh (left) with our Laplacian
(right) and a timestep set to the squared mean of edge lengths.

the sum of squared triangle areas is minimized, using the dynamic program-
ming approach of Liepa [Lie03]. For geodesic distances, we also provide re-
sults for computing the Laplacian based on the intrinsic Delaunay triangulation
[BS07] of this minimum area triangulation.

Mean Curvature Estimation Noting that the Laplacian of the coordinate func-
tion is the mean-curvature normal vector, we can use our Laplace operator to
approximate the mean curvature H at vertex v;

H(vr) := 5 (LX),] - sign({(LX);, ni)) (330)

with n; being the normal at v;.

Since the mean curvature is one at each point on the unit sphere, we can mea-
sure the accuracy of our Laplacian by comparing the estimated mean curvature
to the true one. Table 3.1 gives the root mean square error (RMSE), compar-
ing curvature estimates over different polygonizations of the sphere, and us-
ing different definitions of the Laplace operator. As the table shows, using the
lumped mass matrix increases the accuracy of our operator significantly. While
an un-lumped matrix yields results that are generally surpassed by the triangu-
lation approach, using the diagonalized matrix changes the outcome for most
meshes, with the exception of the fine sphere. Overall, the squared triangle
area minimizer leads to the most accurate results, for both affine and convex
prolongation weights.

Reproducing the Spherical Harmonics The eigenfunctions of the Laplacian
form an orthonormal basis known as the “manifold harmonics” [VL0O8]. As
described in Section 2.3.3, in the case that the surface is a sphere, these eigen-
functions are known to be the spherical harmonics. We evaluate the quality of
our Laplacian by measuring the extent to which the true spherical harmonics
are eigenvectors of the Laplacian. Table 3.2 compares the spectral error, giv-
ing the sum of errors over the spherical harmonics in the first nine frequencies
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un-lumped mass matrix

Sqr. Area
Mesh Affine Convex Centroid Abs. Area [Lie03]
HEex SPHERE 0.0039 0.0159  0.0159 0.0100 0.3711
FINE SPHERE 0.3669 0.4181  0.4181 0.5454 0.0623
REGULAR SPHERE 0.0515 0.05615 0.0515 0.0537 0.0469
Noisy SPHERE 0.1520 0.1463  0.1463 0.1641 0.1053

lumped mass matrix

Sqr. Area
Mesh Affine Convex Centroid Abs. Area [Lie03]
HEex SPHERE 0.0016 0.0049  0.0049 0.0026 0.3711
FINE SPHERE 0.1334 0.1332  0.1332 0.1630 0.0623
REGULAR SPHERE 0.0168 0.0168  0.0168 0.0172 0.0469
Noisy SPHERE 0.0470 0.0440  0.0440 0.0493 0.1053

Table 3.1: RMSE of mean curvature computation on the spherical meshes in Fig-
ure 3.2.

un-lumped mass matrix

Sqr. Area
Mesh Affine Convex Centroid Abs. Area [Lie03]
HEx SPHERE 9.18e-7 4.56e-6  4.56e-6 2.10e-5 0.0037
FINE SPHERE 0.0009 0.0009  0.0009 0.0011 0.0005
REGULAR SPHERE 0.0256 0.0258  0.0258 0.0272 0.0200
Noisy SPHERE 0.0636 0.0804  0.0804 0.0623 0.0722

lumped mass matrix

Sqr. Area
Mesh Affine Convex Centroid Abs. Area [Lie03]
HEx SPHERE 7.41e-7 1.15e-6  1.15e-6 4.30e-6 0.0037
FINE SPHERE 0.0003 0.0003  0.0003 0.0004 0.0005
REGULAR SPHERE 0.0393 0.0398  0.0398 0.0398 0.0200
Noisy SPHERE 0.0643 0.0644  0.0644 0.0655 0.0722

Table 3.2: RSME of spherical harmonics on the meshes in Figure 3.2.

(1 <1 <9). Asthetable shows, using the squared triangle minimizer as virtual
vertex, combined with affine weigths, yields the most accurate results for our
method. In only one occasion it is surpassed by the absolute area minimizer.
As for the mean curvature estimation, using the lumped mass matrix leads to
an overall better accuracy, one again surpassing the triangulation approach on
most tessellations.
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un-lumped mass matrix

Sqr. Area
Mesh Affine Convex Centroid Abs. Area [Lie03] [BS07]
Quabs 1 0.025 0.025 0.025 0.025 0.039  0.039
Quabs 2 0.031 0.031 0.031 0.031 0.086  0.086
L-SHAPED 0.141 0.165 0.134 0.134 0.071 0.074
TeTrRIS 1 0.465  0.490 0.490 0.491 0.168  0.141
TETRIS 2 0.406  0.346 0.151 0.153 0.081  0.067

lumped mass matrix

Sqr. Area
Mesh Affine Convex Centroid Abs. Area [Lie03] [BS07]
Quabs 1 0.026  0.027 0.027 0.027 0.039  0.039
Quabs 2 0.036 0.036 0.036 0.036 0.086  0.086
L-SHAPED 0.057  0.063 0.068 0.068 0.071  0.074
TeTRIS 1 0.218 0.181 0.186 0.185 0.168  0.141
TETRIS 2 0.082  0.089 0.089 0.088 0.081  0.067

Table 3.3: RMSE of geodesic distances for the planar meshes in Figure 3.3 computed
with different choices of virtual vertices and using un-lumped and lumped mass ma-
trices. For each planar mesh the selected vertex was the one with the least norm to the
center of the plane.

Geodesics in Heat We qualitatively compare the results using our operator
and several polygon triangulation strategies in Figure 3.8. The selected time
step was the squared mean edge length of the mesh. Our construction (a) gives
a result with considerably fewer artifacts compared to the other approaches.
Triangulating polygons to maximize the minimal angle (c) also gives good re-
sults, but this approach is not suitable for arbitrary meshes since it fails on
non-convex polygons. Minimum-area triangulations avoid this problem (d),
but give worse results due to poor triangle shapes. Combining minimum-area
triangulations with the Laplacian based on the intrinsic Delaunay triangula-
tion [BS07] (e) fixes this problem, but is more complex to compute. In (b)
we show the result obtained by using the cotangent Laplacian on the mesh ex-
plicitly refined by inserting the virtual vertices (this is equivalent to S*). Our
construction is clearly different from just refining polygons.

The quality of geodesics is linked to the number of positive off-diagonal coeftfi-
cients in the stiffness matrix. Analyzing the ratio of these entries for Figure 3.8
confirms this correlation:

a) ours b) refinement c) max-angle d) min-area e) intr. Delaunay

11% 17% 5% 15% 0%
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a)ours b) refinement c) max-angle d) min-area e) intrinsic Delaunay

Figure 3.8: Computing geodesic distances on a quad mesh (top left) following the
approach of Crane et al. [ CWW13] with the timestep set to the squared mean of edge
lengths. Column (a) depicts the result of our operator, while the images (b—e) show re-
sults using different triangulation strategies: refining the mesh by inserting the virtual
point (b), triangulating polygons to maximize the minimum angle (c), and triangulat-
ing polygons to minimize squared triangle areas (d). To improve the results of (d), we
employ the Laplacian based on the intrinsic Delaunay triangulation [BS07] (e). The
triangles of (c) are already Delaunay, therefore using the intrinsic triangulation does
not further improve the result in (c).

The smaller the number of positive non-diagonal entries is, the higher the
quality of the result becomes. Table 3.3 provides a quantitative evaluation of
geodesic distances for the different point choices. We compare them to Eu-
clidean distances on different planar meshes (Figure 3.3). Our operator yields
smaller root-mean-square errors for most models, including the geodesic
distances computed via intrinsic Delaunay triangulation [BS07; SSC19a]
(based on the implementation provided in libigl [JP+18]), but is bested on the
tetris tessellations.

Timings We evaluated the computational costs of the different virtual vertex
options on the Hex Spuere (16070 faces) and the FINE SpHERE (96408 faces)
shown in Figure 3.2. All timings were measured on a standard workstation
with a six-core Intel Xeon 3.6 GHz CPU; no experiment exploited multi-
threading. We analyze the construction of our approach with the different
virtual vertex versions described in Section 3.2.3: centroid of polygon vertices,
minimizing the sum of (absolute) triangle areas (Abs. Area), minimizing the
sum of squared triangle areas using either affine weights or convex weights. We
compare these methods to the minimum area polygon triangulation [Lie03].
The timings are given in Table 3.4.
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Mesh Affine Convex Centroid Abs. Area [Lie03]

Hexacon 55 142 13 357 21
Quabs 171 573 50 1460 82

Hexacon 472+25 483+25 476426  469+25 77+8
Quabs 596+35 596+35 599+35 600+36 498+29

Table 3.4: Timing (in ms) for constructing the Laplace matrix (top) and solving the
linear system (bottom). The latter is split into the time needed for Cholesky factoriza-
tion and for back-substitution.

In terms of the construction time for the Laplace matrix, our approach, with the
exception of centroid, is the fastest of the different virtual vertex choices, since
the Newton optimization of Abs. Area (based on Eigen) and the QP solver of
convex (based on CGAL) are computationally expensive. However, triangulat-
ing the mesh and constructing the cotangent Laplacian is faster than defining
a polygon Laplacian. Also, since a vertex on the polygon mesh has at least as
many face-adjacent neighbors as the same vertex on the triangulated mesh, the
polygon Laplacians are less sparse, resulting in an increased solver time.

Conclusion To conclude, in terms of accuracy, our proposed version using
affine weights and the squared triangle area minimizer gives the overall best re-
sults. However, in some settings the strictly convex weights can lead to smaller
errors. For most applications, using the lumped mass matrix instead of the tra-
ditional mass matrix defined in Equation (3.8) improves the results. Therefore,
balancing numerical performance with efficiency, we found the minimizer of
the squared triangle areas through affine weights to be the best choice.

3.3.3 Comparison to Other Polygon Laplacians

In this section, we compare the linear virtual refinement method to the polygon
Laplacians defined by Alexa and Wardetzky [AW11], de Goes et al. [GBD20]
(see Section 2.3) and the harmonic shape functions by Martin et al. [ MKB+08].
We use the same test setting introduced in Section 2.3.3 and will, therefore, omit
a detailed description of the different applications. The figures in the evalua-
tion will feature specific labels for some methods to improve clarity. We will
refer to the harmonic shape functions as “Harmonic” and the linear virtual re-
finement method as “Lin. Virt. Ref.” respectively.
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Poisson Equations The convergence behavior of the linear virtual refinement
method is depicted in Figure 3.9 for planar meshes and in Figure 3.10 for spher-
ical tessellations. The identical slopes of the log-log plots for the unit grids re-
veal that our operator inherits the desired quadratic convergence order of the
triangle-based cotangent Laplacian. On challenging meshes, the convergence
rate stagnates similarly to that of the other polygon Laplacians. While compet-
itive in terms of accuracy;, it is bested by the DEC operators for one selection of
the considered parameter choices on two of the three planar polygon meshes.
However, depending on the mesh, the other parameter choice typically yields
one of the highest error rates. Our method yields the best results for concave
faces and some of the lowest error rates for spherical meshes, especially for
hexagons. At the same time, the harmonic shape functions surpass the other
operators on the concave tessellation.

2D Triangle 2D Quad
1072
1073
1074
1075 - o 1070 ;
10 2D Voronoi 10 10 2D Concave
107248
1073
1074
1075
102 10! 102
Inverse mean edge length
[Alexa et al. 2011 A = 2] [deGoes et al. 2020 A = 1]
[Alexa et al. 2011 A = 0.5] == [deGoes et al. 2020 A = 0.1]
=@)= Harmonic =@)= Lin. Virt. Ref.

Figure 3.9: L, convergence plots for the solution of the Poisson equation on planar
grids with triangle, quad, Voronoi and concave faces of increasing resolution.
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Figure 3.10: L, error in log-log scale for the Poisson solve of the spherical harmonic
function Y3 with eigenvalue —12 on different tessellations of the unit sphere.

Geodesics in Heat Figure 3.11 and 3.12 show the deviation of the obtained
geodesic distances, including the results of our linear virtual refinement
method. While we already established that the DEC operators tend to have
more significant error fluctuations for different parameter choices A, the Lapla-
cian obtained with our proposed method remains relatively unaffected, even if
we choose different time steps for the computation. However, while yielding
good results, the linear virtual refinement method is often outperformed by
the Laplacian of deGoes et al. [GBD20] for the optimized parameter A = 0.1.
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Figure 3.11: L, error in log-log scale of the Geodesics in heat method on planar grids
with quads (top), concave polygons (center) and Voronoi faces (bottom).
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Figure 3.12: L, error in log-log scale of the Geodesics in heat method on unit spheres
with quad (top), hexagon (center) and concave faces (bottom).
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Figure 3.13: The types of non-simplicial polyhedral meshes used for evaluation in the
volumetric case. They will be referred to as Pyramids (left), Truncated (center), and
Voronoi (right).

3.3.4 Linear Virtual Refinement on Volumes

As previously mentioned, the DEC operators are only defined on surface
meshes. The volumetric evaluation of the linear virtual refinement method
will therefore only be compared against the harmonic coordinates. Exam-
ples for the different types of polyhedral tessellations used in the following
evaluation are depicted in Figure 3.13.

Poisson Equations Similar to surface meshes, the convergence behavior of
the Laplacian can be analyzed on different volumetric tessellations of the unit
cube. The process is similar to Section 2.3.3, but now we chose the 3D Franke
test function [Fra79] (see Equation (2.49)) for the right hand side of the system.
The error rates are depicted in Figure 3.14. Both methods, the linear virtual re-
finement method and the harmonic shape functions by Martin et al. [ MKB+08|
yield qualitatively similar results. However, while slightly more accurate, the
harmonic coordinates are very expensive due to the solving process involved
in their construction, especially for volume meshes, while our method is signif-
icantly faster (see paragraph “Timings and Sparsity”).

Eigenmodes Given the volumetric unit 3-ball B3, the eigenfunctions u and
eigenvalues A of the Laplacian can be obtained with the help of the Helmholtz
equation:

Au=—Au inB® (3.31)
st. u=0 onadB°, (3.32)

The discrete solution can be expressed by the spherical Bessel functions, which
allows us to solve the generalized eigenvalue problem

Su = AMu (3.33)
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Figure 3.14: L; error in log-log scale of the Poisson system solved for Franke's test func-
tion on unit cubes tessellated with hexahedra (left), pyramids (center left), truncated
cells (center right), and Voronoi cells (right).

Table 3.5: Different statistics involved in the solution process of a Poisson problem
with the presented polygon and polyhedral Laplacians.

Mesh |V Harmonic [AW11] [GBD20] Lin. Virt. Ref.
build nnz solve build nnz solve build nnz solve build nnz solve
Quads 2D 26k  92s 231k 8ms 44ms 231k 8ms 47ms 231k 8ms 10ms 231k 8ms
Voronoi 2D 51k  78s 616k 25ms 94ms 616k 25ms 76ms 616k 25ms  29ms 616k 25ms
Hexahedra 3D 4913 465s 117k 3ms _ = — — — — 190ms 117k 3ms
Voronoi 3D 5183 482s 324k 5ms _ = — — — — 140ms 324k 5ms

with the stiffness and mass matrix obtained on a polyhedral tessellation of
B3. Figure 3.15 shows the results for the eigenvalues on the unit ball. Once
again, the harmonic coordinates yield slightly more accurate results, but both
methods display the desired constant eigenvalues for the respective frequen-
cies, with only slight deviations.
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Figure 3.15: The smallest 34 non-zero eigenvalues of the Laplacian on two unit balls
consisting of hexhedra (left) and truncated cells (right). The individual top plots shows
the computed eigenvalues and the lower ones the relative deviation from the ground
truth.

Timings and Sparsity In this section, we compare different statistics involved
in the solution process of a Poisson problem for both 2D and 3D meshes. Ta-
ble 3.5 lists the respective timings to construct the stiffness matrix (build), the
number of its non-zero entries (nnz), and the time it takes to solve the system
(solve) with Eigen’s Simplicial LLT solver [ GJ+10]. The timings were measured
on a standard workstation with a six-core Intel Xeon 3.6 GHz CPU. All Lapla-
cians have the same sparsity pattern, leading to roughly the same solving times.
However, while the implementation of the respective methods has not been ex-
tensively optimized for efficiency, it is very apparent that the construction time
of the harmonic shape functions by Martin et al. [ MKB+08] exceeds the other
operators by a tremendous amount. Especially for volume meshes, the time it
takes to build the involved matrices makes the method not competitive, since
its accuracy is on par with the linear virtual refinement method and does not
justify the large costs.

Summary While our evaluations do not demonstrate that our Laplace op-
erator is superior to existing state-of-the-art methods, it does show that it is
competitive. We perform slightly better than triangulation [Lie03] and, while
typically on par with the harmonic shape functions, are significantly more effi-
cent regarding the construction costs of our operator. While the DEC polygon
Laplacians outperform our method in some cases, their behavior depends on
the choice of the parameter A, which cannot be fixed so as to perform well in
all cases. In contrast, our method is parameter-free.
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3.4 LIMITATIONS

The presented virtual refinement method can handle both non-planar and non-
convex polygons, but there are some aspects that must be considered. In the
planar setting, our method is limited to star-shaped polygons. A planar poly-
gon is called star-shaped, if there exists a point p € f, such that for each other
point x € f the direct line px between the points lies entirely within the poly-
gon’s boundary. The set of all points that satisfy this property is referred to as
kernel, or Ker(f) of the polygon. Therefore, we can only achieve virtual trian-
gles with completely positive areas if the virtual vertex lies within the kernel
of the shape. Otherwise, triangle flips will occur due to the boundary intersec-
tions of the virtual triangle edges. Furthermore, while the squared area min-
imizer generally lies within the kernel of the polygon, there exist star-shaped
elements where this is not the case. While this is more of a theoretical issue, as
these examples had to be carefully constructed, it should be kept in mind.
Additionally, if the polygon is non-planar, the virtual triangulation will only
yield an approximation of the shape’s original surface. Challenging configura-
tions may lead to less accurate results since the virtual triangulation might not
be the best surface representation for the given polygon.

3.5 CONCLUSION

This chapter presented a novel polygon Laplacian, defined by first virtually
refining the polygon mesh to a triangle mesh and then coarsening the cotan-
gent Laplacian from the triangle mesh back to the original polygon mesh. The
method can be extended to polyhedral meshes by adding a virtual vertex
within each cell and refining the tessellation into virtual tetrahedra. The
derived Laplace operator exhibits numerous desirable properties, including
sparsity, symmetry, positive semi-definiteness, linear precision, and consis-
tency with the divergence and gradient operators, without suffering from
an increase in the dimensionality of the linear system. We have evaluated
our Laplacian against other state-of-the-art methods and have demonstrated
that it performs competitively, providing efficient and high-quality solu-
tions without requiring parameter tuning. However, there are still several
open questions that remain to be addressed. For simplicity, we used the
omnipresent cotangent Laplacian on the refined tessellation. Nevertheless,
what would happen if we use different operators from alternative numerical
discretization schemes? Furthermore, various applications require higher
accuracy and faster convergence rates that can seldom be achieved with basis
functions defined on linear degrees of freedom. Therefore, extending the
linear virtual refinement method to higher-order basis functions would extend
this flexibility to arbitrary polygonal and polyhedral meshes. Both of these
questions will be explored in the following two chapters of this thesis.
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The previous chapter of this thesis introduced the linear virtual refinement
method. Now, we shift our focus slightly and investigate using an alternative
numerical discretization scheme on the refined tessellation, instead of the pre-
viously employed cotangent Laplacian.

The main idea of this chapter focuses on the Discrete Duality Finite Volume ap-
proach (DDFV [Her00; Her09; DO05; CH11], detailed in Section 4.2.2), which
is part of the Finite Volume Method (FVM). The FVM was initially introduced
by Dusinberre [Dus55; Dus61] for the heat equation and can be used on all
differential equations that can be expressed through the divergence operator.
The fundamental principle of the FVM is that the integral of a differential over
a small volume can be expressed as a surface integral of fluxes over the bound-
ary of the same cell [Rap17]. Similar to MFD, Finite Volume discretizations
can be considered mimetic as they seek to enforce balance equations for mass,
momentum, and energy within each cell, making them particularly well-suited
for fluid mechanics problems [LMS14].

However, the conventional derivation of the 2D Laplace operator with Finite
Volumes (FV) assumes a Delaunay triangle mesh, more specifically orthogo-
nal dual and primal edges, to prevent positive coefficients on the off-diagonal
entries of the stiffness matrix. This is a very strong restriction for our virtual
triangulation and one of the many reasons we use DDFV. It is a particular polyg-
onal variant of the FV that allows non-Delaunay meshes and inspired several
other generalizations of a similar kind, like the Nodal Discrete Duality scheme
by Andreianov and Quenjel [ AHQ23] or the Node-Diamond scheme by Quen-
jel and Beljadid [QB23].

For our polygon Laplacian, we incorporate the primal as well as the (typi-
cally non-orthogonal) dual mesh of the DDFV method and accommodate the
oblique intersection of primal and corresponding dual elements. Specifically,
we define discrete gradients, respectively divergences, per so-called diamond:
the region spanned by a dual edge and corresponding simplicial primal ele-
ment. In 2D, the corresponding primal element is an edge; in 3D, it is a trian-
gle. If facets have degrees higher than three, we insert an additional virtual
vertex and triangulate the facet. In all cases, the primal element is incident on
two cells, and the dual vertices in these cells define two simplices. In other
words, in 2D, a diamond is spanned by two triangles; in 3D, it is spanned by
two tetrahedra.

In the spirit of the original mesh defining the domain for discretization, we also
want the new polygon Laplace operator to map from values at vertices to values
at vertices. We achieve this by combining the DDFV approach with the linear

53



THE DIAMOND LAPLACIAN

virtual refinement from the previous chapter. This means all vertices except the
primal ones are virtual: They are defined as affine combinations of primal ver-
tices. These affine combinations are then once again encoded as prolongation
matrices and multiplied onto the DDFV Laplacian, thereby effectively hiding
the involved diamonds and virtual vertices from the user.

The resulting construction is comparatively straightforward and seamlessly
generalizes from arbitrary polygons (Section 4.3) to arbitrary polyhedra
(Section 4.4), on which we will further elaborate in the upcoming chapter.

Individual Contribution [ developed the Diamond Laplacian presented in this
chapter in collaboration with and under the supervision of Mario Botsch and Marc
Alexa. Although the theoretical derivations were a collective effort, I was responsible
for implementing the method and conducting all quantitative and qualitative evalua-
tions. The proof as to why the minimum diamond cell is necessary to avoid spurious
modes in 3D was provided by Marc Alexa.

Corresponding Publication This chapter is based on the following publications:

Bunge, A., Botsch, M., and Alexa M. (2021). “The Diamond Laplace for Polygonal
and Polyhedral Meshes.” Computer Graphics Forum, 40(5):217-230.

4.1 PROBLEM STATEMENT

We assume a mesh M is given. The particular types of meshes we consider
are two-dimensional surface meshes immersed in 3D and volumetric meshes
embedded in 3D. Because they are the most common operators, we focus on
the gradient, the divergence, and the Laplacian.

Asin the previous chapters, we denote the elements within the mesh as ordered
vertex sets. Edges are denoted as ¢;; = (v;, v;), triangles as t;; = (v;, v}, vx), and
tetrahedra as t;j; = (v;, v}, vk, v7), with ‘ei]' tijk|, and }tijkl‘ referring to their
length, (signed) area, and (signed) volume, respectively. We use the operator
* to map between primal and dual entities, such that, e.g., v7 denotes the dual
region of a vertex v; and e;‘]- denotes the dual edge of the primal edge e¢;;.
Given a polygonal or polyhedral mesh with vertices V), edges &, faces F, cells
C, and diamonds D, our aim is to generate the following matrices, representing
discrete linear approximation of differential operators:

7

e The gradient G° € R4 P>Vl where d € 2,3 is the intrinsic dimension of
the mesh and | D| is the number of diamonds to which the operator assigns
constant gradients.

e The divergence D° € RIVI*4IP|, which we assume to be constructed as
T
D<> - C‘;<> MQ.
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Here, M, € R4 |DPIxd-[D] ig 4 diagonal matrix containing d-times the dia-
mond masses.

e The stiffness matrix for the Laplacian is then constructed as
DTG’ = 8% e RVI*IVI,

This construction ensures that stiffness matrix is symmetric positive semi-
definite and that the the discrete operator is consisten with Equation (2.2). In
addition, we ask that the Laplacian operator maps constant vectors to zero
and has linear precision, i.e. maps linear functions to themselves, which will
be further discussed in Section 4.5.

4.2 FINITE VOLUME DISCRETIZATIONS

We believe that FV discretizations [Dro14], in particular the Discrete Duality
Finite Volume method [Her00; DOO05; Her09; CH11], offer an interesting alter-
native to deriving discrete differential operators for geometry processing appli-
cations. As our approach is inspired by and extends upon DDFV, this chapter
will describe both concepts, FV and DDFV, in more detail.

4.2.1 Finite Volume (FV)

Finite Volume methods are based on the idea to consider the integral of a dif-
ferential in a small region. There exist a number of identities that allows ex-
pressing such integrals of a differential as an integral over only the boundary
of the region. For the divergence of a vector-valued function u over a flat two-
dimensional region () we have

// divu dA = §£ u'nds, (4.1)
(@) Q)

where n is the outward normal along the boundary Q). For u = uc with con-
stant vector ¢ and a scalar function u we can exploit the “product rule”

div(uc) = udive+¢"Vu = " Vu. (4.2)
=0

Plugging this into the divergence theorem above for ¢ = e; (the canonical unit
vectors) and combining the results we find the vector-valued identity

//Q VudA = ;éﬂ unds. (4.3)
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Applying the divergence theorem to the vector field Vu we get

// AudA :55 Vu'nds. (4.4)
O Ele)

All identities straightforwardly extend to higher dimensions.

The basic derivation of the Laplace operator with FVs in 2D makes the assump-
tion that the mesh is Delaunay. This means the dual mesh is the Voronoi di-
agram, such that primal and dual edges are orthogonal. Consider a vertex v;
with position x;, the dual region associated to it is its Voronoi cell ();. The
function values of the unknown piecewise linear function u at vertex v; are
u; = u(x;). For the integrated Laplacian over the region ();, the boundary 0(); is
piecewise linear and consists of the dual edges e;k]-, withv; € N(v;) denoting the
one-ring neighbors of vertex v;. If we denote by e;; = x; — x; and ef]- =X —X;
the primal/dual edge vectors, respectively, and exploit that the normal n on
the dual edge ej.‘]. is parallel to e;; and that the gradient of the piecewise linear
function on the vertices points along this edge, we get

//AudA: Z /VuTnds
Qi v;€N(v;) €ij

= ) VAT

v;€N(v;) e Hel]”

4.5
= Z / (u] — 1/[1') —1 ds ( )
v;€N(v;) e Hei]'H
= ) e (uj = uj) .
v;€N(v;) 1™

The last expression directly describes the construction of a linear operator that
maps values at vertices {u;} to the integral over the region associated to ver-
tex v; of the Laplacian. Note that the (7, j) entry in the matrix S is given by the
(signed) length of the dual edge divided by the length of the primal edges. One
obtains exactly the same result with the DEC approach [Hir03], which is based
on similar arguments. Interestingly, also the Finite Element Method applied
to triangles leads to these weights [PP93]. This suggests that the derivation
extends to arbitrary triangulations, albeit carefully assigning signed lengths to
the dual edges. The resulting positive coefficients for edges without the Delau-
nay property have undesirable consequences (see, for example, the discussion
in [SSC19b]). While this is often accepted for applications in graphics, in the
FV community it is not considered admissible, which restricts the meshes to
be (weighted) Delaunay. From a practical perspective, however, one is often
given a primal mesh and it is costly to generate an orthogonal dual, if one ex-
ists [ Aur87; Ale20].
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X2

X1

X1

Figure 4.1: Different formulae and interpretations of the per-diamond gradient in 2D
DDEFV. Top left: Constructing gradients from primal and dual axes v,v* and their
enclosed angle a.. Top right: The midpoints m;; of the diamond edges and their enclosed
subarea. Fitting an affine function to the function values at these midpoints is another
possibility to obtain the 2D derivation of the diamond gradient. Bottom center: The
vectors ei# orthogonal to the diamond edges e;; needed to compute our gradient for the
diamond cell.

4.2.2 Discrete Duality Finite Volume (DDFV)

The DDFV method deals with this problem by giving up orthogonality.
Rather, the idea is to construct a gradient operator and associate it to the
region spanned by a pair of a primal edge (with endpoints x; and x;) and its
corresponding dual edge (with endpoints x; and x,). This region, depicted in
Figure 4.1, is called a diamond.

Notice that a diamond is always a quadrilateral, regardless of the degree of
the faces. The DDFV approach is to associate function values u; and u, to the
dual vertices — thereby introducing a second set of degrees of freedom — and to
associate a constant gradient with the diamond. As shown in Figure 4.1, left,
we denote by D the diamond built from the four points (xy, X2, X;, X; ), by ejj €D
its edges, and by e;; = x; — x; the corresponding edge vectors. Making use of
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Stokes” theorem gives

/ VudA :yg unds
D

= . eaD Hez]” / e (1= t)ui + tuy) dt (4.6)

ul+u]

= Z Z] 5

ei]-eaD

For the discrete gradient of the diamond we take the mean over the region, so
we divide the integral by the area |D]|, leading to

1
Vulp = 5D] Z el-J]T (u; +u]~) . (4.7)
| | e,-]-eaD

The literature on DDFV [Her00; DOO05; Her09; CH11] provides alternative

derivations for the per-diamond gradient Vu|p and several interpretations
and corresponding formulae:

o Fitting the gradient to directional derivatives along the primal and dual
edges:
Vulp-(x; —x,) = u; — uy,
b (= x) =, s
Vulp - (x1 —x2) = u3 — u.
e Fitting an affine function w(x, y) to the function values u;; = 3 (u; + u;) at
the midpoints m;; = %(xi + x;) of the four diamond edges ¢;; € dD, and
taking the gradient Vw of this affine function (see Figure 4.1, top right).
Note that fitting an affine function to the four diamond vertices is an over-
determined problem, while the midpoint fit is uniquely determined.

e A formulation based on the primal/dual axes v = (xo — x1)*/ ||x2 — xq||

and v = (x, — x;)/ ||xr — x;|| as well as their enclosed angle « (Fig-
ure 4.1, top left):
1 _ —
Vulp = — ( L V*) ' (4.9)
sina \ ||x; — x| %1 — x|

Although these formulations are all equivalent, we believe our formulation
(4.6) to be more intuitive when handling boundary cases and when general-
izing to polyhedral meshes in Section 4.4. For boundary edges, the diamond
consists of a single triangle (x1, x2, x;) only. The typical DDFV approach is to re-
place x, by the edge midpoint %(xl + x2) and to properly deal with degenerate
edges/faces. In contrast, our formulation (4.7) remains unchanged.

The divergence divu and the Laplacian Au = —divVu can be obtained
through very similar derivations. The resulting DDFV gradient operator maps
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from function values at primal and dual vertices to gradients at diamonds,
the divergence operator from vectors at diamonds to scalars at primal/dual
vertices. The DDFV Laplacian therefore maps functions values at primal/dual
vertices to their Laplacians sampled at primal/dual vertices.

4.3 DIAMOND LAPLACE FOR SURFACE MESHES

In its standard formulation, the DDFV operators are not directly useful for ap-
plications in computer graphics and geometry processing, since they have two
main drawbacks: First, by introducing function values at dual vertices it sig-
nificantly increases the number of degrees of freedom (DoF) to be solved for.
For instance, the DoFs are roughly tripled for triangle meshes and roughly dou-
bled for quad meshes. Second, the approach is defined for planar 2D meshes
only, but not for two-manifold surface meshes embedded in 3D, which we are
mostly interested in.

In this section, we address both problems. Replacing the extrinsic per-diamond
gradient with an intrinsic version w.r.t. the polygonal mesh allows us to gen-
eralize the 2D DDFV scheme to embedded surface meshes (Section 4.3.1). For
the second part, we follow the idea of our linear virtual refinement method
and represent the dual DoFs as interpolations of the primal DoFs. These ver-
tices are then incorporated through prolongation and restriction matrices that
remove the dual DoFs and keep only the primal ones.

4.3.1 Intrinsic Gradient

Compared to mesh faces, diamonds are the better entity to associate gradi-
ents with, since for general polygonal meshes higher-degree faces might not
be planar and typically cannot be flattened without introducing distortion. Di-
amonds spanned by a pair of primal vertices x;, x, and dual vertices x;, x, are
not necessarily planar in the 3D embedding, but can be isometrically unfolded
into the plane around their primal “hinge” edge (x1, x2). We can therefore rep-
resent the diamond in an intrinsic 2D coordinate system, which allows us to
then directly apply the gradient construction of (4.7).

It is convenient to choose the primal edge as the first coordinate axis, i.e.,

X]'—Xl'

r (4.10)

= xill”

The second coordinate axis has to be orthogonal to this axis, contained in the
planes spanned by the two triangles (x1, x2,x;) and (x2, X1, X, ), and consistently
oriented w.r.t. r. We achieve this by projecting the edges e;; and ey, onto the
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orthogonal complement of the first axis r and normalizing the result:
\7[ = (I - I'I'T> (Xl _Xl)/ V] = ‘7'1/ H‘?lH ’

(4.11)

¥ = (1 - rrT) (xi — %), Ve =/ |%].

Notice that both directions v; and v, are consistently oriented, are intrinsically
in one plane, and form an orthonormal frame with r. In this frame, the 2D
coordinates of the four diamond vertices are

D: (0 O)T

(I =x],0)",
(r,v)" (i = x1),
(

T, vr) (x, — x1).

(4.12)

These 2D coordinates can now be used in the gradient construction of Equa-
tion (4.7), yielding an intrinsic 2D gradient per diamond.

From (4.7) we can then directly read off the entries for the diamond’s gradient
operator matrix G$, € R?*4 by noticing that the value i depends only on the two
diamond edges 1nc1dent on it. Therefore, the i-th column of G}, is

_ 1
G<,5(:,z):m Y, e (4.13)
eijeaD

The matrix G° for the global gradient operator, mapping from function values
at primal and dual vertices to gradients at diamonds, is then assembled from
all diamond gradient matrices

= P Gp, (4.14)
DeD
where @ is the assembly operator that scatters and accumulates the entries of
the local matrices into the global matrix.

4.3.2 Dual Vertices as Affine Combinations

As previously mentioned, the approach to remove the dual DoFs from the
DDFV formulation is inspired by the linear virtual refinement method (Chap-
ter 3). It also introduces dual vertices into primal faces, but represents their
position and function values as affine combinations of the positions/values of
the face’s vertices.

Consider a general polygonal face f with ns vertices v; € f and index j. We
construct the dual face point x¢, which takes the role of x; or x; in the gradient
construction described above, as an affine combination of the face vertices

Xf = Z ZU]'Z' X; with 2 wﬁ =1 (415)
vief vief
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The dual DoFs, i.e., the function values at dual face vertices x £, are then repre-
sented in terms of the primal DoFs by the same affine combination:

u(xf) = Z ZU]‘Z' Uij. (4.16)

viEef

For a polygonal mesh with |V| vertices and | F| faces, this construction can be
packed into an (|V| + | F|) x |V| prolongation matrix P with entries

1 ifi=jandi<|V,
Pi]. = wy; ifi=|V|+ kand vertex vj € frr (4.17)

0 otherwise,

just as in Equation (3.6). Combining the gradient matrix (4.14) and the prolon-
gation matrix (4.17) yields our gradient operator for polygonal meshes

G® = G°P e R¥EIxIV]) (4.18)

where |€| denotes the number of edges (and therefore of diamonds) in the
mesh. This matrix maps scalar function values u; at primal vertices to 2D intrin-
sic gradient vectors Vu|p at diamonds.

While for standard FV methods with orthogonal duals the dual point x; is the
circum-center of triangle f, the canonical choice for general polygonal meshes
in the DDFV literature [Her00; DO05; Her09; CH11] is the face’s barycenter.
However, as the barycenter is not necessarily inside a non-convex (planar) face,
we instead follow the suggested virtual vertex placement of Section 3.2.3 and
compute the virtual dual vertex x¢, associated with a polygonal face f; (and
its affine weights w; respectively) by minimizing the sum of squared triangle
areas (see Equation (3.11)).

4.3.3 Divergence and Laplacian

With the intrinsic gradient (4.18) in place, we can now define the discrete di-
vergence and Laplacian. The DDFV discretization of the divergence operator
leads to a matrix G°T M,,, which we combine with the transposed prolongation
(or restriction) matrix to get the diamond divergence matrix

D° =P'G°T M.. (4.19)

Here, G° is the gradient matrix of (4.14) and M, is a 2 |€| x 2|&| diagonal
matrix with the area | D;| of diamond D; in its entries (2i — 1,2i — 1) and (2i, 2i).
This operator maps intrinsic 2D vectors at diamonds to scalar values at primal
vertices.
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The (integrated) diamond Laplace operator is finally defined as the diamond
divergence of the diamond gradient, i.e.,

S° = D°G® = P'G°T M, G°P, (4.20)

and maps from vertices to vertices. The pointwise Laplacian is obtained as
—(M?®)~1S° by multiplying with the inverse of the mass matrix M®. This mass
matrix is defined as

M°® = PT M° P (4.21)

from the standard DDFV diagonal mass matrix M®

D50, 411 |D| if v; is a primal vertex,
M, = Y50, % |D| if v; is a dual face vertex, (4.22)

0 otherwise,

which assigns to the four (primal and dual) vertices of a diamond one fourth
of its area. The “sandwiching” with PT and P distributes the mass from primal
and dual vertices to the primal vertices only. Note that the sandwiching leads
to a non-diagonal mass matrix M°. We avoid lumping this matrix to a diago-
nal matrix, since numerical results have shown that the initial matrix leads to
higher accuracy of our operator. Notice that in above construction, the dual
points do not have to be inserted into the mesh explicitly, nor do the matri-
ces G°, M., P have to be built explicitly. Instead, the matrices G®* and M® can
directly be constructed through a diamond-based matrix assembly, which im-
plicitly computes the virtual vertices and their affine weights, similar to the con-
struction described in Algorithm 1 of Chapter 3.

4.4 DIAMOND LAPLACE FOR VOLUME MESHES

One particular advantage of our Diamond Laplacian is that it can be general-
ized to 3D polyhedral meshes in an intuitive and consistent manner. Given a
general polyhedral mesh with vertices V, edges &£, faces F, and cells C, we will
define diamonds D from primal and dual vertices. The starting point of our
construction is the generalization of the (integrated) gradient of a function u
over a diamond. Analogous to the 2D case, given the gradient operator G°, we
also have a divergence operator D® and can then assemble the weak form of
the Laplacian §° = D°® G°. Representing the dual vertices as affine combina-
tions of primal vertices will again define the sandwiching operator P' (-)P that
removes the dual DoFs. In the following we provide the details of these steps,
in particular where they deviate from the case for surface meshes.
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4.4.1 Integrated Gradient

Before we focus on the particular shape and construction of the diamonds, we
derive the integral of the gradient (and, by analogy, divergence) for an arbitrary
region () bounded by a triangulated surface. We assume the function over the
triangulated boundary to be linear on the triangles, defined by values u; at
vertices v;. If the triangles are given as triples of vertices t;j; = (v;, v;, v;) € 90Q),
we get

// VudV = # undA

a
Ajjk / i | (( b)u; + suj+ tuy) dsdt (4.23)
t keaQ”al]kH
Uj + ui+u
Z ajj—— L~ i ] k
kGaQ
where 1
jj = 5 (%) = xi) x (= i) (4.24)

is the area vector of triangle (v;, vj, vy), i.e., the vector pointing in outward nor-
mal direction and with magnitude equal to the area of the triangle (see Fig-
ure 4.3, left). Taking the mean over the region by dividing the integral by the
volume || leads to

1
Viulg = — Z ajjk (lez' +uj+ uk) . (4.25)

3 | ‘ ti]‘keaQ

The local gradient operator for the region (2, mapping values at the vertices
i € dQ) to a constant 3D gradient vector, is then built in a column-wise manner
as

G (:,1) Y aie (4.26)

3 |Q| tljkeaﬂ

which is consistent with the 2D version in Equation (4.13).
4.4.2 Diamond Rings and Minimal Diamonds

The canonical choice for a diamond in a volumetric mesh would be associated
with a dual edge ¢;, with endpoints x;,x,. These two dual vertices, together
with the primal vertices xq,xy, ..., x, of the face f = ¢;, that is dual to ¢;,, de-
fine a region that is bounded by two triangle fans spanned by x; or x, and two
neighboring vertices x;, x; 1 of the face f. Given that the integrated gradient
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X1
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Figure 4.2: A minimal diamond spanned by two cell points x;, xy, a face point x¢, and
a primal edge x1,Xp.

can be computed easily for this region as shown above, it may be tempting to
assign a gradient to each such diamond (as done in [Her09]). Yet, similar to
other constructions for non-simplicial meshes [AW11; GBD20], constructing
the gradient, divergence, and Laplacian in this way and then sandwiching the
resulting matrices leads to spurious modes, i.e., a Laplacian operator with more
than the constant functions in its kernel. This would be a serious drawback,
and is a known limitation of the CeVe DDFV method [Her09], as discussed for
instance in [ABH13].

Since we are adding a dual vertex to each cell, all vertices in a cell become con-
nected in the operator. Consequently, adding a dual vertex x; to each face f
introduces no additional non-zeros in the operator. Based on this virtual face
vertex, the diamond is decomposed into a ring of diamonds, where each indi-
vidual diamond is minimal, i.e., consists of two tetrahedra with tips x;, x, and a
base triangle (x;, X1, xf), as shown in Figure 4.2. Basing the construction on
these minimal elements ensures that the kernel of the Laplace operator only
contains the constants.

Incidentally, minimal diamonds are the right analogy to 2D diamonds, in the
following sense: Consider a minimal diamond defined by x;, x, and (x1, X2, X3)
and the midpoints of the 6 edges emanating from x; and x; (see Figure 4.3,
right):

1 1 )
my; = 00 +x), my =506 +x), i=123 (4.27)

We observe that these six midpoints form a parallelotope:
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Xy

Figure 4.3: For a minimal diamond consisting of two tetrahedra, the gradient can be
computed from the area vectors a;ji of its faces (left) or by fitting an affine function to
edge midpoints m;; (right).

1. The two triangles (m;;, m;;, my3) and (m,q, m,, m,3) are parallel to the tri-
angle (xq,x2,x3), in fact, translates scaled by a factor of %

2. The quad mj;, m,;, m,», m, is a planar parallelogram, and likewise for the
other two quads. All edges m;; — m,; connecting corresponding points on
opposite sides are copies of the vector x; — x;, scaled by a factor of %

This means any two edges of the triangle (x1, X2, x3) together with the vector
X; — X, span the linear part of the affine space defined by the six points. Hence,
an affine function can uniquely be fitted to these midpoints —analogously to the
2D parallelogram version show in Figure 4.1, bottom center — and the gradient
of this function can be used as the diamond gradient (giving the same result
as Equation (4.26)).

4.4.3 Dual Vertices as Affine Combinations

There have been several extensions of the DDFV scheme to volumetric meshes,
see Hubert and colleagues [CH11; ABH+12] for a good overview. Most 3D
DDFV methods define the gradient on minimal diamonds, as proposed above,
but require the insertion of additional vertices (and their associated DoFs) per
cell, face, and edge, thereby significantly increasing the number of degrees of
freedom. As previously described in Section 3.2.7, our construction requires
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virtual vertices per cell and face only, but their DoFs are eventually removed by
the sandwiching operator.

Analogous to the surface case, we first insert for each face the point that min-
imizes the sum of squared triangle areas (see Equation (3.11)), turning each
face into a fan of (virtual) triangles. For a polyhedral cell ¢, the virtual point x,
is then computed to minimize the sum of squared tetrahedron volumes:

X, = arg min vol (x;,X;, Xy, X 2 4.28

c gxti]-kze:ac (ij) ( )
For a cell ¢ with m vertices (consisting of primal vertices and virtual face ver-
tices), the above minimization requires to solve an m x m linear system for the
affine weights defining x..
This two-step sandwiching procedure results in the same two prolongation ma-
trices Pr and P¢ previously described in Equation (3.28). As already men-
tioned, they insert face and cell points, respectively, and are then combined
into the final prolongation matrix

P = P. Pr. (4.29)
4.4.4 Gradient, Divergence, Laplace

The global gradient operator G°, mapping values at primal vertices and dual
face/cell points, is again constructed by assembling per-diamond gradient ma-
trices G}, and is then combined with the prolongation matrix to yield G®

G= Gy G =GP, (4.30)
DeD

where @ again is the matrix assembly operator. Following the 2D derivation,
the divergence and Laplacian operators for polyhedral meshes become

D°=P'(G°)"M,, S°=D°G?, (4.31)
with a diagonal matrix M., containing diamond volumes. The mass matrix
M?® = PTM°P, required for the point-wise Laplacian (M®)~1S?, is defined in
terms of the diagonal matrix M®, which distributes the volumes of the (mini-
mal) diamonds D to the primal vertices, face vertices, and cell vertices:

Y psi & |D| if v;is a primal vertex,
. 1|D| if v; is a face vertex,

YDsi ; D[ if o, (4.32)
Y. psi g |D| if v;is a cell vertex,

0 otherwise.

Analogous to the surface construction, we avoid lumping the mass matrix and
instead work with the non-diagonal matrix M°.
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4.5 PROPERTIES

We analyze the properties of our Diamond Laplacian with respect to the criteria
listed in Section 2.1.1.

Symmetry, Definiteness By construction, the stiffness matrix of the Dia-
mond Laplacian §° = D°G® = P'(G°)TM,G°P is a real-valued symmetric
positive semi-definite matrix, since the diagonal matrix M, (containing
diamond areas/volumes) is also symmetric positive definite.

Linear Precision If the mesh s flat, i.e., a polygon mesh embedded in a plane,
respectively a polyhedral mesh embedded in 3D, then we expect the discrete
Laplacian to vanish on linear functions away from the boundary of the domain.
The DDFV gradient G° of a linear function over a closed region with polygonal
or polyhedral boundary reproduces the constant gradient of this function. The
divergence operator (G°) "M, is exact on the resulting constant vector fields,
leading to linear precision of the refined DDFV stiffness matrix (G°)"M,G®
[DOO05; Her09; CH11]. The sandwiching PT () P preserves this linear precision,
as discussed in Section 3.2.8 of the previous chapter.

Null-Space The Diamond Laplacian has a one-dimensional kernel containing
only constant functions. It is obvious that constant functions are sufficient for
the gradient to vanish, implying that they are in the kernel of the Laplacian. It
remains to show that constant values are necessary for the gradient to vanish.

We explain the situation for minimal diamonds in 3D — the case for surface
meshes works analogously. The gradient of a minimal diamond can be inter-
preted as the gradient of the affine function interpolating the values on the edge
midpoints my;, m,;, i = 1,2,3 (Section 4.4.2). For these values to be identical it
is necessary that (i) the values at x;, xp, and x3 are identical and (ii) the values
at x; and x;, are identical. Because the mesh is connected, it follows that the
values at all primal vertices and dual vertices need to be identical. Notice that
this argument cannot be extended to diamonds with a non-triangular base: If
the base is a polygon with more than three vertices already the gradient within
this polygon may vanish for non-constant values on the vertices. This problem
for diamonds with non-triangular base has also been described in the DDFV
literature (cf. [ABH13]).

It remains to explain why the constant values on primal vertices and the con-
stant values on dual vertices are identical. In our setup this follows directly
from the fact that values on dual vertices are affine combinations of the values
in primal vertices. In other words, while G® may have a two-dimensional ker-
nel, the kernel of G°Pis guaranteed to contain only the constant functions. As
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long as the diamond mass matrix M., has full rank this implies that also S® has
the desired kernel.

Lastly, note that the DDFV literature only considers meshes with boundary,
where values on primal and dual vertices are connected through identification
on boundary edges. In this case, G® already has the desired kernel [ABH13].
For meshes without boundary this fails. Our sandwiching approach rectifies
the situation.

Locality The Diamond Laplacian is local, but less local than related existing
schemes, since the diamond gradient couples neigh-
boring cells and the sandwiching couples all primal
vertices incident on a cell. For simplicial meshes, the
cotan Laplacian of a vertex v; depends on all ver-
tices sharing an edge with v;. For the previously
introduced polygonal Laplacians [AW11; BHK+20;
GBD20] it depends on all vertices sharing a face with
v;. For the Diamond Laplacian it depends on the ver-
tices of (i) the cells incident on vertex v; and (ii) the
cells sharing a face with these cells. This set is larger
than the vertices in the edge-based or cell-based one-
ring neighborhood, but generally smaller than edge-based two-ring neighbor-
hood. For instance, on a regular triangle mesh the Laplacian of vertex v; de-
pends on 12 neighbors, which is in between the 6 and 18 vertices of the one-ring
and two-ring neighborhoods, respectively (see inset figure).

Maximum Principle The maximum principle for discrete Laplace operators
is commonly derived from the sign structure of the operator matrix. If the di-
agonal elements are all positive and the off-diagonal elements are all negative,
then the operator is an M-matrix, implying the maximum principle. The sign
of the off-diagonal entries in S® depends on the input mesh, and like other
Laplacians the Diamond Laplacian, in general, has no maximum principle. A
Delaunay triangle mesh guarantees the desired signs for the coefficients of the
cotangent operator. For Delaunay tetrahedral meshes, the cotangent operator
has no maximum principle. The DEC construction does provide the maximum
principle for Delaunay meshes, but may lack semi-definiteness if the mesh is
not Delaunay [ AHK+20]. The Diamond Laplacian, in contrast, has no maxi-
mum principle even for Delaunay triangle or tetrahedral meshes.
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Figure 4.4: Color-coded absolute mean curvature for two different tessellations com-
puted with the Diamond Laplacian (left: hexagon-dominant, right: triangles). The
results are visually very similar.

4.6 EVALUATION

In this chapter, we will expand the introduced comparisons for non-simplicial
meshes of Section 3.3 with the results of the newly defined Diamond Laplacian.
As in the evaluation of the linear virtual refinement method, we will first high-
light some qualitative results obtained with the Diamond Laplacian, but the
main focus of this chapter will lie on the discussion of the quantitative tests.

4.6.1 Surface Meshes

Mean Curvature When applied to the coordinate function of the surface
mesh, the Laplace operator yields an approximation of the integrated mean
curvature vector (see Equation (3.30)). We approximate the point-wise mean
curvature H at a vertex v; with the Diamond Laplacian, as visualized for a
triangle mesh and a general polygon mesh in Figure 4.4. Note that in contrast
to the other polygon Laplacians presented in this thesis [AW11; BHK+20;
GBD20; MKB+08], the Diamond Laplacian does not reduce to the cotangent
Laplacian in case of triangle meshes, but instead provides a more accurate
discretization. This will become more obvious in the quantitative evaluation.

Geodesic in Heat Since the gradient and divergence operators are directly
involved in several computation steps, the gradient defined on the diamonds
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Figure 4.5: Geodesic distances obtained with the Diamond Laplacian, being visually
identical despite different tessellations.

makes the application of this method natural. We already mentioned that, de-
pending on the employed Laplacian, the number and dimension of the gradient
vectors in the geodesic in heat method vary. As described in Section 4.3.1 the
Diamond gradient operator leads to intrinsic two-dimensional gradients that
are associated with the virtual diamond cells and therefore with the edges of
the original mesh. The distances on different tessellations are qualitatively
compared in Figure 4.5. The quantitative evaluation displayed in Figure 4.6
and Figure 4.7 shows the results for different unit grid and unit sphere tessel-
lations. In general, the Diamond Laplace and de Goes et al.’s method [ GBD20]
for A = 0.1 yield the lowest error rates for the spherical tessellations, inde-
pendent of the chosen time step. This is a good indicator of the quality of the
gradient and divergence operators defined on diamonds compared to other
constructions. On planar grids, the Diamond Laplacian retains its accuracy for
the mean edge time step but is negatively affected if ¢ is increased to the max-
imum diagonal time step. In this setting, other operators like those obtained
with the linear virtual refinement method or Alexa and Wardetzky’s method
[AW11] for A = 0.5 can surpass it.

We also evaluated the accuracy of the Diamond operator constructed by plac-
ing dual vertices x; at face centroids instead of the minimizer of the squared
triangle areas. While the centroid is typically employed in the DDFV literature,
its performance on non-convex tessellations (similar to the L-plane and Tetris
meshes displayed in Figure 3.3) yields worse results than the area minimizer,
since flipped triangles lead to unfavorable diamond cells, which in turn reduce
the overall performance of the operator.
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Figure 4.6: L; error of geodesic distances for different tessellations of the unit grid.
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Figure 4.7: L; error of geodesic distances for different tessellations of the unit sphere.
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Figure 4.8: L, error in log-log scale of the Poisson system solved for Franke’s test
function on different tesselations of the unit square. On triangle meshes, the operators
[AW11; BHK+20; GBD20; MKB+08] reduce to the cotangent Laplacian and hence
yield the same results.

Poisson Equations We analyze the convergence rate of the Diamond Lapla-
cian by solving the Poisson equation on different tessellations of the unit square
and sphere. As in previous chapters, we employ the Laplacian of Franke’s
test function [Fra79] and the values of the scaled spherical harmonic function
Y2(x,y,z) with eigenvalue A = —12. As can be seen in Figure 4.8 and Fig-
ure 4.9, the Diamond Laplacian has the expected convergence rate and con-
sistently maintains lower errors than most of the other discretizations for the
majority of test cases. On spherical meshes, it consistently leads to the most
accurate results. On planar meshes, de Goes et al. [GBD20] yields lower error
rates on two tessellations for A = 1. However, this hyper-parameter configura-
tion would lead to one of the least accurate results on the spherical tessellations.
The linear virtual refinement method slightly surpasses our new operator on
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Figure 4.9: L, error in log-log scale for the Poisson solve for the scaled real-valued
spherical harmonic function Y3 with eigenvalue —12 on different tessellations of the
unit sphere.

the concave planes. However, the Diamond Laplacian is empirically still one of
the most consistent operators with respect to its accuracy. On triangle meshes,
it performs favorably for both problems and is more accurate than the cotan-
gent operator, to which the other polygon Laplacians are reduced.

4.6.2 Volume Meshes

Poisson Equations We solve the Poisson system on different tessellations of
the 3D unit cube, as depicted in Figure 3.13, by fixing boundary vertices to the
values of Fsp (see Equation (2.49)). As shown in Figure 4.10, the Diamond
Laplacian has the expected convergence behavior and yields lower error rates
than the linear virtual refinement method or the harmonic coordinates.
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Figure 4.10: L; error in log-log scale of the Poisson system solved for Franke’s test func-
tion on unit cubes tessellated with hexahedra (left), pyramids (center left), truncated
cells (center right), and Voronoi cells (right).

Eigenmodes The plots in Figure 4.11 show that the Diamond Laplacian suc-
cessfully recovers the desired eigenvalues, independent of the tessellation. It
also significantly surpasses both the linear virtual refinement method and the
harmonic coordinates in accuracy. For tetrahedral meshes, we can compare the
Diamond Laplacian to the volume cotangent Laplacian (see Section 2.2.2), in
this setting referred to as Primal Laplacian, and to the Dual Laplacian, which was
introduced in [AHK+20]. The results are displayed in Figure 4.12. As for the
polyhedral tessellations, the Diamond Laplacian is considerably more accurate
than both the primal and dual tetrahedral Laplacians.

Sparsity and Timings The operator matrix for polygon Laplacians has more
non-zero elements than the corresponding adjacency matrix. These entries re-
flect that at least the vertices belonging to the same face are connected since they
all influence the (integrated) differential properties of the face. The choice of
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Figure 4.11: The smallest 34 non-zero eigenvalues of the Laplacian on two unit
balls consisting of hexhedra (left) and truncated cells (right). The top row shows
the obtained eigenvalues, the bottom row the deviation from the true values. In all
cases, the Diamond Laplacian is more accurate than the linear virtual refinement
method[ BHK+20] or the harmonic coordinates [ MKB+08].

Table 4.1: Different statistics involved in the solution process of a Poisson problem
expanded with the results of the Diamond Laplacian. Since the operators of Alexa and
Wardetzky [ AW11] and de Goes et al. [ GBD20] have similar construction times, work
only in 2D, and have the same sparsity pattern, we use the results obtained with Alexa
and Wardetzky's operator as a representative for the DEC discretizations.

Mesh 4 Harmonic DEC Lin. Virt. Ref. Diamond
build nnz solve build nnz solve build nnz solve build nnz solve
Quads 2D 26k  92s 231k 8ms 44ms 231k 8ms 10ms 231k 8ms 43ms 537k 21ms
Voronoi 2D 51k 78s 616k 25ms 94ms 616k 25ms 29ms 616k 25ms 224ms 1723k 74ms
Hexahedra 3D 4913 465s 117k 3ms — — — 190ms 117k 3ms 250ms 333k 6ms
Voronoi 3D 5183 482s 324k 5ms — — — 140ms 324k 5ms 280ms 1497k 11ms

diamonds as regions for estimating the differentials allows a more accurate esti-
mation of the gradient across (primal) edges. However, using these cells comes
at the expense of introducing additional non-zero entries in the operator matrix
that reflect this connection. The same holds for polyhedral meshes, where the
additional cell and face vertices we (virtually) insert to construct the minimal
diamonds lead to a higher density in the Diamond stiffness matrix than that
of the matrices constructed with the linear virtual refinement method and the
harmonic coordinates. The reduced sparsity results in higher computational
complexity for solving the involved linear systems, as can be seen in Table 4.1,
which expands the results from Table 3.5 by the respective timings obtained
with the Diamond Laplacian.
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Figure 4.12: The 34 smallest eigenvalues of the Laplacian, computed on uniform and
adaptive tetrahedral tessellations of the unit ball. For tetrahedral meshes the harmonic
coordinats [ MKB+08] and the linear virtual refinement method both reduce to the
Primal cotangent operator, therefore yielding the same results. The Diamond Laplacian
is not affected by adaptive tessellations and achieves a higher accuracy.
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4.7 LIMITATIONS

The virtual refinement for the Diamond Laplacian is limited by the same as-
pects as discussed in Section 3.4, meaning that, depending on the shape of the
respective primal cell and the placement of the virtual dual vertices, parts of
the diamond cells might be flipped.

Furthermore, by construction, the operator does not allow for local optimiza-
tions per polygon. Finite Element approaches enable us to optimize its shape
functions, for example by altering the position of the virtual vertex, individ-
ually for every single cell. For the Diamond Laplacian, similar optimizations
require global operations since the diamond cells depend on the values of two
adjacent polygons.

4.8 CONCLUSION

In this chapter, we improved on DDFV methods by generalizing the 2D DDFV
formulation to surface meshes immersed in 3D (intrinsic gradients) and by pro-
viding a formulation for polyhedral meshes (ring of minimal diamonds) that
avoids the spurious modes of CeVe [Her09] and is considerably simpler than
CeVeFE [CH11]. We combine this with the linear virtual refinement method’s
one- and two-step prolongation matrices for polygonal and polyhedral meshes.
The resulting prolongation allows us to remove the additional degrees of free-
dom of dual cell and face vertices from the improved DDFV operators. The Di-
amond Laplacian provides a simple and accurate Laplacian for general polyg-
onal and polyhedral meshes that maps values at vertices to values at vertices
while having the appropriate kernel, linear precision, and the desired semi-
definiteness.

In extensive numerical evaluations of prototypical geometry processing appli-
cations, we compare the Diamond Laplacian to several existing methods from
the graphics community. The Diamond Laplacian is superior to all its competi-
tors in almost all experiments, especially on volume methods. Otherwise, it is
one of the most accurate contenders. In contrast to existing polygon Laplacians,
itis not reduced to the cotangent formulation on triangle or tetrahedral meshes.
It is, therefore, a viable alternative for pure simplicial meshes since it provides
more accurate results, particularly if the gradient operator is involved.

The price for generality and accuracy is a higher number of non-zero elements,
leading to a slight increase in computation time. We believe that this is a useful
trade-off in graphics and geometric modeling, where meshes are mainly pro-
cessed without altering them. We cannot resist making the obvious remark:
Diamonds are attractive but somewhat expensive.
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VARIATIONAL QUADRATIC SHAPE
FUNCTIONS FOR POLYGONS AND
POLYHEDRA

In the previous chapters, we considered polygonal and polyhedral Laplacians
that provide a similar level of numerical accuracy for a given mesh resolution
and inherit the desired quadratic convergence rate under element refinement.
For the FEM methods specifically (linear virtual refinement method (Chap-
ter 3) and harmonic coordinates [ WBG07; MKB+08]), this implies a common
characteristic: They define piecewise shape functions that are associated with
the vertex nodes of the given polygon. Using this kind of bases is common prac-
tice in geometry processing due to their balanced trade-off between accuracy
and efficiency. Nevertheless, it is known that higher-order shape functions can
offer improved accuracy and faster convergence at the price of higher compu-
tational cost. Quadratic shape functions have been proposed as a good com-
promise in several previous works (see, e.g., [MTP+08; SDG+19; SHG+22]),
but they are currently restricted to simplicial or hexahedral meshes. In this
chapter, we generalize quadratic shape functions to arbitrary polygonal/poly-
hedral meshes and demonstrate their superior numerical behavior in various
experiments.

Inspired by the linear virtual refinement method and the Diamond Laplacian,
we split each cell (polygon or polyhedron) into simplices by inserting virtual
vertices and then employing quadratic P2 elements on the refined mesh. This
virtual refinement is not performed explicitly but is hidden from the user
through the special prolongation matrices that distribute the virtual degrees of
freedom (DoFs) to the original DoFs of the input polyhedral mesh. While the
construction of this prolongation is understood for linear shape functions (see
Chapter 3), care has to be taken to attain the beneficial numerical properties
of quadratic shape functions. We derive a localized per-element variational
optimization that minimizes gradient discontinuities across virtual simplices
within the cell. This results in variational piecewise quadratic shape func-
tions for polygons and polyhedra, which generalize second-order Lagrange
shape functions, also known as P2 elements, exactly reproduce them on
simplices, and inherit their beneficial numerical properties.

Compared to computations on surface meshes, solving PDEs on volumetric
meshes is considerably more expensive — an effect that is accentuated for higher-
order shape functions. Our second contribution is a simple two-level multigrid
solver, which is again hidden from the user and offers superior computational
performance compared to a sparse direct supernodal solver.

In the following, we review related work (Section 5.1) before proposing
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our variational quadratic shape functions and multigrid scheme for polygo-
nal/polyhedral meshes (Section 5.3). In Section 5.4, we evaluate our method’s
numerical performance for various experiments on surface and volume
meshes, demonstrating that our method compares favorably to existing
approaches.

Individual Contribution [ developed the generalization of the linear virtual refine-
ment method to higher-order shape functions in collaboration with Philipp Herholz,
Olga Sorkine-Hornung, Mario Botsch, and Misha Kazhdan. The generalization of
quadratic P2 elements to arbitrary polygons and polyhedra was a collective effort. The
proofs of the shape functions various properties were written by Misha Kazhdan and
extended upon by me. The numerical evaluation and comparison to other polygonal
operators and higher order shape function in different computer graphics applications
were implemented by Misha Kazhdan and me. The custom multrigrid solver that sigif-
icantly improves computational times were designed and implemented by Misha Kazh-
dan, Mario Botsch and Philipp Herholz.

Corresponding Publication This chapter is based on the following publications:

Bunge, A., Herholz, P., Sorkine-Hornung, O., Botsch, M., and Kazhdan, M. (2022).
“Variational Quadratic Shape Functions for Polygons and Polyhedra.” ACM
Transactions on Graphics, 41(4) 54:1-54:14.

5.1 RELATED WORK

Although the discretization of a respective Laplace, divergence, and gradient
operator is a valuable tool in geometry processing, an explicit construction of
finite element shape functions further extends the possible set of applications
we are able to address. Therefore, while briefly touching upon this subject in
Section 2.2.3 and highlighting the construction of polygon linear shape func-
tions in Section 3.2.2, we will further expand on this topic and other existing
basis functions in the upcoming section.

5.1.1 Shape Functions for Polygons and Polyhedra

A displacement-based finite element method for polygons and polyhedra was
presented by Rashid etal. [RS06]. They omit the typical transformation to a ref-
erence element and instead define basis functions on the physical coordinates
of the mesh. However, since strict continuity between the elements cannot be
satisfied, this method is a non-conforming approach, generally leading to a
more complex formulation. From another perspective, generalized barycentric
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coordinates can also be used to define shape functions for both polygons and
polyhedra [HS17]. The central idea is to express each point inside a cell as
a weighted average of cell vertices analogously to barycentric coordinates for
simplices. Popular examples are Wachspress coordinates [Wac75], mean value
coordinates [Flo03; JSW05], harmonic coordinates [JMD+07], or maximum en-
tropy coordinates [ Suk04; HS08].

These coordinates have been mainly used for cage-based deformation, which
is also the motivation for higher-order constructions [LS08]. Recently Longva
et al. [LLK+20] introduced a higher-order cage based simulation algorithm,
which through the virtual element method (VEM) can handle polygons and
polyhedra. However, unlike our method, they do not construct explicit ba-
sis functions, since the VEM [VBC+13] is based on the construction of virtual
bases that follow clear definitions but are not computed in practice. The con-
nection between this approach and polygonal/polyhedral finite elements was
analyzed by Manzini et al. [MRS14]. The work of Gilette et al. [GRB16] uses
generalized barycentric coordinates to define conforming scalar-valued and
vector-valued basis functions of differential form order k = 0,...,2 for poly-
gons and k =0, ..., 3 for polyhedra, inspired by Whitney differential forms. A
novel method to define barycentric coordinates in the context of cage-based de-
formation was presented by Dodik et al. [DSS+23], who are able to learn differ-
ent sets of shape funtions with the help of neural fields. Wicke et al. [ WBGO07]
employed mean value coordinates as shape functions for convex polyhedra in
a finite element elasticity simulation. Their approach was generalized to non-
convex polyhedra by Martin et al. [MKB+08] through the use of harmonic co-
ordinates. Schneider et al. [SDG+19] adapt the latter harmonic elements to de-
fine shape functions for general polyhedra in otherwise hex-dominant meshes.
This allows them to extend spline-based approaches from pure hex meshes to
hex-dominant mixed meshes. However, their basis construction expects spe-
cial mesh configurations (general polyhedra are always separated by hexahe-
dra), typically requiring an initial mesh refinement step. Additionally they
need to explicitly enforce PDE-dependent conditions to guarantee higher-order
convergence. Our method generally uses more degrees of freedom to attain the
same convergence order, but it works for arbitrary polyhedral meshes and does
not need PDE-dependent modifications. Bishop et al. [ Bis14] also worked with
harmonic coordinates to define shape functions on star-shaped polygons and
polyhedra. Similar to Rashid and Selimotic [RS06], they solve the harmonic sys-
tem directly on the polyhedron instead of on the reference element. However,
their integration scheme requires correcting the shape functions” derivatives
in order to satisfy the divergence theorem and obtain necessary consistency
properties.

Compared to the basis functions in this section, the shape functions for poly-
gons/polyhedra we are going to describe in the next chapter of this thesis are
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considerably simpler, since they are piecewise quadratic, and therefore can
more easily and efficiently be constructed, differentiated, and integrated.

5.1.2 Higher-Order Basis Functions

In the context of more restricted tessellations (triangles/tetrahedra or quad-
s/hexahedra), linear basis functions are commonly used for geometry process-
ing. However, recent studies [SHG+22] have pointed out that using higher-
order basis functions, especially the quadratic Lagrange basis, yields more ac-
curate results than linear elements in several settings. For example, Mezger et
al. [MTP+08] pointed out that using quadratic finite element shape functions
in the context of shape editing offers not only increased numerical accuracy,
but also allows for superior geometric approximation in the sense of smooth
mesh interpolation.

Schneider et al. [SHD+18] leverage the accuracy of higher-order elements by
selectively increasing the degree of the shape functions for individual elements,
based on their quality, allowing the authors to efficiently obtain weak solutions
to a PDE that do not depend on mesh quality. In [ VDR17], higher-order polyno-
mial degrees were investigated for the virtual element method and analyzed for
three-dimensional problems. While also achieving higher accuracy and faster
convergence, the VEM, as stated before, does not construct explicit basis func-
tions. With our method, we are not bound to simplicial or quadrilateral ele-
ments and can extend the numerical benefits of quadratic basis functions to
any kind of tessellation.

The 2D polygonal finite element basis defined by Aurojyoti et al. [ARR+19]
achieves global C! smoothness by elevating the degree of generalized barycen-
tric coordinates through Bernstein-Bezier functions. While global C! smooth-
ness is crucial for solving their fourth-order thin plate problem, it comes at
the costs of more complex shape function that require careful numerical inte-
gration, especially for non-convex elements. In contrast, our resulting shape
functions can be integrated analytically and do not require a canonical base
domain, which is hard to define, especially for arbitrary polyhedra.

5.2 BACKGROUND

In this section we will briefly extend the notion of Lagrange basis functions
presented in Section 2.2 to higher-order elements. We will also revisit the lin-
ear virtual refinement method introduced in Chapter 3 and delve deeper into
the linear shape functions derived from this method, with the intention to lay
the theoretical groundwork for extending them to quadratic basis functions on
polygonal and polyhedral domains.
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5.2.1 Lagrange Basis Functions

o |

",/V"

Figure 5.1: Lagrange basis functions restricted to a single triangle. Linear basis (left)
and two quadratic basis functions, one associated with a vertex (center) and another
one with an edge midpoint (right). The functions are plotted as height fields over their
domain (gray triangle). Gold and blue regions indicate negative and positive values
respectively.

Consider a simplicial mesh M = (V,S) with vertices V = {vy,...,v5} and
simplex set S. The linear Lagrange basis function at the vertex position x; is
defined as the unique C° continuous and piecewise linear function ¢; with the
Lagrange interpolation property

Pi(x)) = & = {

A function is piecewise linear on a mesh if it is linear on each simplex ¢ € S.
Considering a single triangle, for example, we obtain functions as depicted in
Figure 5.1 (left). Degrees of freedom u; are associated to vertices v;, spanning
the space of continuous and piecewise linear functions

f(x) = Zui%(x)- (5.2)

1 ifi=j,

5.1
0 otherwise. (51)

Quadratic Lagrange basis functions (Figure 5.1 center and right) additionally
provide degrees of freedom at edge midpoints and are defined analogously
to the linear case: The basis function is the unique piecewise quadratic func-
tion per simplex that takes on the value 1 at a specific node (vertex or edge
midpoint) and the value 0 at all others. Note that the above definition of lin-
ear/quadratic shape functions (respective P1/ P2 elements) holds equivalently
for 3D tetrahedral meshes.

By construction, linear and quadratic Lagrange basis functions have the prop-
erty that their sum is pointwise equal to one inside the element (partition of
unity). Following the interpolation property of Lagrange functions, the sum
has to be equal to one at all nodes, and the only linear/quadratic function sat-
isfying this property is the constant function f(x) = 1.
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5.2.2 The Shape Functions of the Linear Virtual Refinement Method

Figure 5.2: Linear shape functions ; on a refined quad element (top row) are com-
bined to form a basis @; on the original polygon (bottom row).

The concept of Lagrange basis functions does not readily carry over to polyhe-
dral meshes. First, polygons in 3D are not necessarily planar, making it hard
to define a parameter domain for the shape functions. But even if a polygon is
planar, there are insufficient degrees of freedom to meet the interpolation con-
straints in Equation (5.1). For example, the space of linear functions is three-
dimensional, but each shape function would be constrained to interpolate more
than three values, one value at each vertex.

As touched upon in Chapter 3, the core concept of the linear virtual refinement
method is to introduce a new virtual vertex inside of each polygon, to use the
virtual vertices to define a triangulation of the domain (see Figure 5.2), and
then to construct the Lagrange basis functions on the triangulation as discussed
above. For a polygon mesh with vertices }V and polygons P, this gives a basis
for piecewise linear functions on the refined mesh with | V| + | P| vertices. How-
ever, the goal is to construct a basis function for each of the original mesh’s | V|
vertices. Therefore, the shape functions associated with the virtual vertices are
distributed to the 1 vertices of the original polygon using weights wy, ..., wy,
with Y, w; = 1. In other words, if the ; are the (17 + 1) linear Lagrange basis
functions on the refined polygon (Figure 5.2, top row), the 1 functions at the
original vertices are

pi =i +twipy fori=1,...,ny (5.3)

(see Figure 5.2, bottom row), with ¢¢ being the basis function associated to
the virtual vertex. This construction guarantees that the piecewise linear poly-
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gon shape functions ¢; obey the Lagrange interpolation and partition of unity
property.

As discussed in Section 3.2.3, we define that the position of the virtual vertex
X € R3 for a polygon (xl,. e X f>, should be the minimizer of the sum of
squared triangle areas. The virtual vertex is then expressed as an affine com-
bination of polygon vertices xy = }; w;x;, since choosing a set of weights with
this property guarantees linear precision for the shape functions. For the lin-
ear shape functions, we use the L, regularization described in Appendix A.2
and solve a linearly constrained quadratic optimization problem to determine
the weights for each polygon. Using these weights we express shape functions
@; as linear combination of the shape functions ;. Unfortunately, these ideas
do not directly extend to higher-order basis functions, as we detail in the next
section.

5.3 METHOD

5.3.1 Quadratic Basis Functions for Polygons

Suppose we are given a polygon (xl, N f) C R3. Asin Chapter 3, we first
introduce the minimizer of the sum of squared triangle areas as virtual vertex
Xf € IR3, splitting the polygon into n f tri-

angles. For visualization purposes we com- /\
monly resort to planar polygons embedded iy
in R2, however, our method generalizes to ar- / /
bitrary polygons in IR3. Similar to the linear

case we are interested in basis functions asso- \‘\d/
!

ciated with nodes on the polygon boundary

that obey the Lagrange property. However, a

direct generalization of the linear refinement ﬁ .
method to quadratic basis functions is not ob- \

vious due to the additional degrees of free- /

dom at the edge midpoints. The inset illus- ‘\\\v
trates the situation: We have 2n; degrees of '

freedom on the polygon boundary (green), which we call coarse nodes Cy, and
ny + 1 virtual degrees of freedom Ky (red). We call the union of both sets the
set of fine nodes Fy = Cny U KCn. The location of the fine nodes are denoted by
x;. On the virtual triangulation we can easily construct the unique quadratic
Lagrange basis ¢; for each fine node. We need to find weights w;; that redis-
tribute virtual degrees of freedom j to coarse nodes 7, forming shape functions
@; of the form

Q; =P+ Z wl]gb] fori € Cy. (5.4)
j€LN
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Interpolation The shape functions constructed according to Equation (5.4)
obey the Lagrange interpolation property ¢;(x;) = J;; atall coarse nodes j € Cy
by construction, because the fine basis obeys ¥;(x;) = 0 for all i € Ky and
j € CN. As a consequence we have C? continuity across polygon edges: The
function values for each shape function are either zero at the polygon edge or
the unique quadratic function satisfying the Lagrange interpolating conditions
at the three nodes along that edge. Consequently, we can choose prolongation
weights w;; independently for each polygon, which is crucial for a linear-time,
parallelizable implementation. Within each polygon the shape functions ¢; are
trivially CO because they are linear combinations of CO functions ;. However,
the functions are not C! along the virtual edges (connecting the polygon ver-
tices to the virtual vertex). This does not come as a surprise since quadratic
shape functions are generally not C! across element edges.

Prolongation Matrix The construction of the prolongation matrix is analo-
gous to the linear case described in Section 3.2.2. The only difference is that we
have more than one virtual vertex. For a face f the local prolongation matrix is

o 1€Cp,
pl= % TN (5.5)
wj; 1 € Kn,

and the per-face prolongation matrices are assembled into a global prolonga-
tion matrix P.

) SN 3
\ﬂﬁ\ ™
‘\v/ ’\v/

Figure 5.3: Prolongation weights computed using a regularizer on their norm lead to
very local basis functions at the cost of smoothness (left). Our proposed energy explic-
itly leads to basis functions that prioritize smoothness across internal edges (right).

Naive Extension The challenge is choosing weights so that the resulting
coarse basis is ‘nice’ — resulting in favorable numerical behavior. A direct
generalization of the linear virtual refinement method could look as follows:
For a polygon with n vertices we have 2n¢ coarse and ny + 1 virtual degrees
of freedom. Find the [Cn| - [KCn| = 2nf - (15 + 1) weights w;; such that:
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1. The partition of unity property holds:
Y wij=1 forjeKy. (5.6)

ieCy

2. The virtual node positions can be expressed as affine combination of
coarse nodes using the weights:

Xj = Z WijX; forj e Kn. (5.7)

ieCn
3. The sum of squared weights is minimized while satisfying the first two
constraints

{wij} = arg minZwle. (5.8)

{wii} 75

The solution to this linearly constrained quadratic optimization problem de-
fines a prolongation matrix P/ whose entries define the basis functions ¢;. Fig-
ure 5.3 (left) shows one such function at an edge node. However, this con-
struction has several shortcomings. Most importantly, it does not reproduce
the desired cubic convergence rate of P2 elements due to its lack of smoothness.
While slightly more accurate than the linear
construction by virtue of the additional de- = linear

grees of freedom, the naive approach con- narve )
verges at the same rate as linear basis func- 1079 - ours —
tions. The inset demonstrates this con-
vergence behavior on a set of 2D Voronoi 1075

[\

1
meshes, comparing the naive approach to our SN

quadratic basis construction proposed below.

As expected from quadratic shape functions, TS
our approach converges cubically. Another issue with the naive approach is
that it fails to reproduce the standard quadratic Lagrange basis for triangles
and yields shape functions with distinctly visible C! discontinuities, exposing
the underlying virtual triangulation. These observations motivate our design
of a Cl-favoring quadratic objective, which led to the final quadratic virtual
refinement method.

3

Variational Energy Minimization Since the fine shape functions 1; are gen-
erally not C! across virtual edges, their linear combination is not guaranteed to
be either. To define ‘nice’ prolongation weights we replace objective (5.8) of the
naive approach with the squared gradient difference integrated along all vir-
tual edges, summed over all coarse basis functions. Figure 5.3 (right) demon-
strates that optimizing this objective subject to constraints (5.6) and (5.7) pro-
duces shape functions that are significantly smoother compared to the naive
approach. Specifically, we solve the following quadratic optimization problem
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W=argmin Y Y [ |Vigi—V,¢i*do
W iccy oeerJo Y ’ (5.9)
s.t. constraints (5.6) and (5.7) are satisified

with respect to the set of prolongation
weights W = {w;;}. Here £ is the
subset of edges in the virtual triangu-
lation that are incident to the virtual
vertex (£ = {(xg, Xz’)}lgignf)- The
operator V represents the gradient
with respect to the right triangle of
the edge and the operator V with re-
spect to the left one. The inset visual-
izes the two differing gradients of the
basis function @; at x. The C! disconti-
nuities can also be seen as derivative
discontinuities in the function’s isolines at virtual edges. If the energy van-
ishes for a set of weights, all basis functions, restricted to the polygon, are cl.
Figure 5.4 shows a set of quadratic Lagrange shape functions on the refined tri-
angle mesh (top row). Minimizing the cross-edge gradient difference (Equa-
tion (5.9)) leads to a set of piecewise quadratic polygonal shape functions for
the coarse nodes (bottom row). While we try to construct shape functions that
are, with respect to our energy, as C! as possible inside the polygons, they are
generally not C! across the polygon edges, just like quadratic Lagrange basis
functions (see Figure 5.3, right).

Partition of Unity As in the linear case, satisfying Equation (5.6) ensures a
partition of unity for the quadratic basis. Specifically, since the Lagrange basis
; sums to one, we have

Y =), (lPi+ Y wz’j¢’j> =) i+ ) wiyi= ), $i=1 (510)
ieCy ieCy jE/CN ieCn ?EI%N ieFn
JEAN

Linear Precision Our shape functions are linearly precise, which is a direct
consequence of the reproduction property enforced as constraint (5.7). To be
linearly precise the restriction of any linear function to the virtual triangulation
must be in the span of the basis. To see that this is the case, consider a linear
function u: R® — R, let u; = u(x;) be the evaluation of u at node x;, and
consider the sum ) ;cc, #;¢;. By the reproduction property we have
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Figure 5.4: Quadratic shape functions on a refined triangle mesh (top row) are com-
bined to form shape functions on the original polygon. Regions colored in orange have
negative function values. The functions are C* everywhere except at the edges where
they only have C° continuity (like the standard quadratic Lagrange basis).

Z ujQp; = Z 12K (l[)l + Z w,-jtp]-) (5.11)

ieCn ieCy jEKN
= Z uP; + Z ( Z uiw,’]'> Y = Z ujp; =u, (5.12)
ieCy jeKn \i€Cn JEFN

Uj

because the reproduction property (Equation (5.7)) extends to arbitrary linear
functions. On the one hand, the sum is in the span of the ¢;. On the other hand,
it can be expressed as the sum of the Lagrange basis functions ¢;, weighted by
the values of u at nodes x;. Since the Lagrange basis has linear precision, it
follows that the latter sum equals 1 within the triangulation and hence that u
is in the span of the ¢;.

Reproduction of Quadratic Shape Functions Although quadratic Lagrange
shape functions are readily available for triangles, we can still apply our
method to a triangle, virtually refining it into three triangles. In this case we
obtain the coarse triangle’s Lagrange shape functions as the unique solution.
Consequently our method can be considered a generalization of quadratic P2
elements from triangles to polygons. The proof is provided in the Appendix
section B.1.
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— j N
_—

O Level 1

O Level 2

@ Level 3

Figure 5.5: Node positions for a refined cube. Parts of the mesh are detached for vi-
sualization purposes. All 2-faces are split into triangles using a virtual vertices. The
volume is decomposed into tetrahedra by introducing a central virtual vertex which is
connected to all face triangles. The nodes are colored according to their type.

5.3.2 Quadratic Basis Functions for Polyhedra

The extension of our method to volumes does not change the demands we
make on the prolonged basis, but involves a virtual refinement similar to that
of the volumetric linear refinement method (see Section 3.2.7). We introduce
new virtual vertices within the polyhedron’s boundary faces as well as a virtual
polyhedral vertex. For the virtual face vertices we choose the point that mini-
mizes the sum of squared triangle areas; for the virtual polyhedral vertex we
use the minimizer of squared tetrahedra volumes of the resulting tessellation.
Figure 5.5 demonstrates the procedure on a cube: Each face is split into four
triangles which are connected to the central virtual vertex, forming 24 virtual
tetrahedra. Each edge of this tesselation is once again equipped with midpoint
nodes corresponding to the 3D quadratic Lagrange basis. We distinguish three
types of nodes, as indicated by the colors in Figure 5.5. Level 1 nodes (green)
are degrees of freedom that are defined with respect to the polyhedron itself,
while level 2 (red) and level 3 (blue) nodes depend on virtual vertices. The pro-
longation weights will, as in the polygonal case, distribute basis functions ¢; at
virtual nodes (red and blue) to coarse nodes (green). To obtain the weights we
minimize the volumetric equivalent to the quadratic energy (Equation (5.9)).
Instead of integrating along virtual edges shared by two triangles we now in-
tegrate over virtual triangles shared by two tetrahedra. Four such triangles for
the cube are depicted in Figure 5.5 in light blue. We again integrate the squared
gradient difference of the shape functions, this time over triangles of the virtual
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Figure 5.6: Cross-sections showing our quadratic shape functions, for different poly-
hedra: While the shape functions are optimized for smoothness, they may exhibit small
gradient discontinuities across virtual faces, visible as sharp corners along iso-curves.
For tetrahedra (top), where we reproduce quadratic Lagrange shape functions, the func-
tions are C! inside the simplex.

tetrahedra that do not tessellate the boundary of the polyhedron:

W=argmin }_ Y [ [Vigi—V,eil*do
W e e T T (5.13)

s.t. constraints (5.6) and (5.7) are satisified,

where 7T is the subset of triangles in the virtual tetrahedralization of the poly-
hedron that are incident to the virtual polyhedral vertex. For the cube, there
are 36 such triangles: 12 joining the cube’s edges to the interior virtual vertex
and 24 connecting the four virtual edges on each of the six faces to the virtual
cell vertex. In this context, the symbols V§ and V denote the gradients of ¢;
on the tetrahedron to the right and to the left of the shared face o, respectively.
Figure 5.6 and Figure 5.7 show several polyhedra, with associated shape func-
tions ¢; at vertices and edge midpoints. Though the functions are piecewise
quadratic and can exhibit gradient discontinuities across virtual triangles in
general, they reproduce the Lagrange shape functions for tetrahedra and are
strictly quadratic in that case.
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Figure 5.7: Additional cross-sections showing our quadratic shape functions for dif-
ferent polyhedra.

There is, however, a caveat that we have to address in the volumetric case. If
we directly construct a prolongation matrix P%’3 to redistribute level 2 and 3
nodes to level 1 nodes, we fail to preserve C’ continuity between neighboring
polyhedral cells. This is because direct prolongation solves for the contribu-
tion of virtual nodes to coarse nodes by integrating gradient mismatch over
triangles interior to a cell. As a result, the contribution of a level 2 node to a
coarse node will depend on the cell over which the prolongation weights are
computed. This is not a problem for polygons since in that case every fine basis
function associated with a virtual node is supported within a single polygon
and not shared through a common edge.

Figure 5.8 (left) demonstrates the problem for the coarse shape function asso-
ciated to the top left corner of a quad shared by two polyhedra. If we compute
the prolongation weights by distributing all virtual nodes to level 1 nodes in a
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+\ R\ ] B
< 4
;

Figure 5.8: Direct prolongation of all virtual degrees of freedom will result in shape
functions that are not C° across shared faces (left). The values of the shape functions
computed for each cell individually differ on the interface between both cells. To remedy
this problem we compute the prolongation in two steps, which guarantees consistent
values across the interface while still allowing the shape functions to be computed per-
element without knowledge of neighbouring cells.

single step, the shape functions defined by the two polyhedra sharing the quad
do not agree on the quad (Figure 5.8 top left).
The problem can be solved by splitting the prolongation into two steps:

1. For each boundary face we first compute prolongation weights satisfying
Equation (5.9), distributing level 2 nodes to level 1 nodes.

2. Then, we solve for the prolongation matrix P, distributing level 2 and level
3 nodes to level 1 nodes, solving Equation (5.13). For this second solve
we fix the prolongation weights already computed in the first step as hard
constraints.

This amounts to first solving for a variational basis on the boundary of the poly-
hedron, and then adjusting the values of the basis functions in the interior of the
polyhedron so as to minimize the cross-edge gradient difference there as well.
By construction, the per-face prolongation weights, computed in the first step,
are defined by optimizing for C! continuity within boundary faces. Thus, two
face-adjacent polyhedra necessarily distribute a level 2 node in the same way
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and the derived basis is guaranteed to be continuous. Figure 5.8 (right) shows
the values of a shape function restricted to a face. The same values can be com-
puted using the 2-step prolongation in either of the two cells.

As in the 2D case, we reproduce the quadratic Lagrange basis functions when
computed on arbitrary tetrahedra, independent of the choice of virtual vertex
(see Appendix B) .

5.3.3 Implementation

Conceptually the implementation of our method is quite simple and can be
easily parallelized over the mesh cells. The central task is to minimize quadratic
energies of the form (5.9) and (5.13). For each cell, we begin by computing
the |Fn| x |Fn| matrix giving the ‘gradient discontinuity mass’ of the finer
Lagrange basis functions:

Kij= ) /U (Votpi — Vo, Vi — Vo ;) do, (5.14)

ceS*

where S* is the set of edges £* or triangles 7 connected to the interior virtual
vertex. This energy is computed in an intrinsic fashion using the metric tensor
defined by the embedding of the (original and virtual) vertices, and reduces to
the integration of a quadratic polynomial over a simplex. Then, the (Dirichlet-
regularized) energy associated with a prolongation matrix P is

E(P) = Tr (PT(K + sSA)P) (5.15)

where S§% is the stiffness matrix defined on the cell (S = [(Vi;, Vi), inte-
grated over the triangles/tets in the cell), added to act as a regularizer since
K can be singular for non-simplicial cells. In principle, the regularizer should
only be added when a cell is non-simplicial, in order to guarantee quadratic
reproduction. However, as ¢ is taken to be very small (1078 in our implemen-
tation) the effect of always including the regularizer is negligible in practice.
We show in Appendix B that the choice of a Dirichlet regularizer in particular
guarantees nice properties for our system. Specifically, it ensures that the ¢;
are uniquely defined, that the partition of unity property is automatically sat-
istied without requiring explicit constraints, and that the linear precision prop-
erty is automatically satisfied whenever the cell is flat — that is, whenever the
d-dimensional cell has the property that the vertices of the cell as well as the vir-
tual vertices all lie within a d-dimensional plane. As the entries in P are linear
in the weights {w;;}, this gives a quadratic energy in the prolongation weights.
We add the partition of unity (5.6) and linear reproduction (5.7) constraints
using Lagrange multipliers and solve the resulting KKT system.
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5.3.4 Multigrid

Unfortunately, the transition from polygons to polyhedra reveals the ‘curse of
dimensionality’. For both polygonal and polyhedral meshes, the total number
of nodes is equal to the number of vertices plus the number of edges in the
mesh. Additionally, a function associated with a node is supported on all cells
sharing that node. However, since the system matrix will typically have a non-
zero entry for every pair of nodes whose associated functions have overlapping
support, we get significantly denser system matrices for polyhedral meshes.
For example, the local stiffness matrix of a single hexahedron contains 400 non-
zero entries while the stiffness matrix of a single quad contains only 64.

An approach to improve the sparsity of the system matrix would be to use the
refined tetrahedral mesh explicitly and forego the polyhedral basis approach.
Though this would reduce the number of non-zero entries per row, it would
come at the cost of a significantly higher-dimensional system matrix, resulting
in a similar problem of computational complexity. We propose a solution to
this issue which consists of a custom multigrid approach tailored to our vir-
tual vertex setting, which provides a significant performance boost while still
generating an accurate solution.

Our multigrid hierarchy consists of two levels: The coarse level contains nodes
at vertices (Figure 5.9, bottom row), the fine level also contains nodes at the
edges of the input polyhedron (top row). Note that these levels are not directly
related to the notion of level used in Section 5.3. We perform multiple V-cycles
as depicted in Figure 5.9 to solve linear systems Ax = b represented in our
basis. A single V-cycle consists of four steps.

Relaxation This step performs n;; Gauss-Seidel iterations. We implemented
a parallel version using greedy graph coloring to identify maximally indepen-
dent sets of nodes.

Restriction The restriction operation can be expressed using the matrix R €
RIVIX(IVI+IED) for a polyhedral mesh with |V| vertices and |£| edges:

1 jisavertexnodeandi = j,
R;j =< 1 jisanedgenode and i is indicent to j, (5.16)
0 otherwise.

Given an approximate (fine) solution x the restriction computes the coarse level
residual as b¢ = R(b — Ax).
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Figure 5.9: A V-cycle of our multigrid implementation. The fine level relaxes the linear
system using degrees of freedom at the vertices and edge-midpoints (top). The restric-
tion/prolongation operators distribute information from/to edge-midpoints to/from
vertices (middle). At the coarse level, we use a direct solve to solve the system dis-
cretized over the vertices (bottom).

Direct Solve At the coarse level we employ the sparse supernodal Cholesky
solver implemented in Cholmod [CDH+08] to solve

RAR "x¢ = bC. (5.17)

The modified system is not only smaller, but also significantly sparser com-
pared to the original one and is solved more efficiently.
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Prolongation The prolongation operation uses the coarse solution to correct
the estimated fine solution. Using the Galerkin formulation, this can be
expressed in terms of the transpose of the restriction operation: x < x + R "xC.

The multigrid implementation has two parameters: the number of relaxation
iterations 7;; and the number of V-cycles n¢y. We found njt = 3 to be optimal
in terms of total convergence time, which we evaluate empirically in the next
section.

5.4 EVALUATION

This evaluation will slightly deviate from the preceding result sections of this
thesis. While we will keep expanding upon the comparisons of the different
Laplacians within the introduced applications, we will shorten some of the tests
due to the lack of direct comparability between linear and quadratic discretiza-
tions. As previously discussed, quadratic shape functions promise enhanced
accuracy with the trade-off of longer solving times. Therefore, we will put more
emphasis on comparing our approach to other higher-order basis functions de-
signed for general volume and surface meshes. These include the standard
bi/triquadratic quadrilateral/hexahedral Q2 shape functions for quadrilater-
al/hexahedral meshes and Schneider et al.’s [SDG+19] Poly-Spline basis func-
tions, which we will refer to as PolyFEM in the legends of the plots. Similarly,
our quadratic shape functions will from now on be labeled as the quadratic vir-
tual refinement method, abbreviated as “Quad. Virt. Ref”. Furthermore, we
will provide qualitative examples to illustrate the visible advantages of using
quadratic basis functions over the linear elements defined in the earlier chap-
ters of this thesis.

5.4.1 Numerical Accuracy

Poisson Equation We measure the deviation of the solution u from the true
function values, displayed in Figure 5.10 and Figure 5.11 for surface meshes
and in Figure 5.12 and Figure 5.13 for volumetric meshes. The convergence
plots demonstrate that our method achieves the desired cubic convergence rate
for all tessellations, for both surfaces and volumes, in contrast to the quadratic
slope of the linear discretizations. Q2 elements and Poly-Spline basis functions
also provide cubic convergence. The slightly lower error of the traditional Q2
basis is to be expected, since they impose more degrees of freedom per ele-
ment. Regarding the Poly-Spline basis [SDG+19], a major advantage of this
method are the few degrees of freedom needed to obtain their level of accu-
racy. Unfortunately, this feature only holds for specific meshes with large regu-
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lar quad/hex regions. Furthermore, their basis construction requires an initial
subdivision step whenever the input mesh does not meet their requirements
(see example tessellations in Figure 5.11 and Figure 5.13). It ensures that for
any quad/hex only one edge/face is adjacent to a general polygon/polyhedron.
Additionally, they enforce that non-quad/non-hex cells are not adjacent to each
other or at the boundary of the mesh. Even in the case of these constrained
tessellations our basis functions still give better results than the Poly-Spline
method for surface meshes. However, we yield slightly higher errors on the
volume meshes.

2D Quad 2D Voronoi 2D Concave

10! 10 10 10
Inverse mean edge length
[Alexa et al. 2011 A = 2] [deGoes et al. 2020 A = 1]
[Alexa et al. 2011 A = 0.5] == [deGoes et al. 2020 A = 0.1]
=@= Harmonic =)= Lin. Virt. Ref.
+ Diamond == Quad.Virt. Ref.

Figure 5.10: L2 error in log-log scale of the Poisson system solved for Franke’s test
function on planar meshes with quads (left), Voronoi cells (center), and concave faces

(right).
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Figure 5.11: L? error in log-log scale of the Poisson system solved for Franke’s test
function on planar grids with quads (left) and subdivided Voronoi cells (center) in
accordance to the needs of the Poly-Spline method (right).

3D Pyramids 3D Truncated 3D Voronoi
10714 1
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Figure 5.12: L2 error in log-log scale of the Poisson system solved for Franke’s test func-
tion on different tessellations of the unit cube. The tesselations are as follows: Pyramids
(left), truncated cells (center), and Voronoi cells (right).
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Figure 5.13: L2 error in log-log scale of the Poisson system solved for Franke’s test func-
tion on unit cubes with reqular hexahedra (left) and subdivided Voronoi cells (center)
in accordance to the Poly-Spline refinement (right).
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Figure 5.14: The 34 smallest non-zero eigenvalues of the Laplacian, computed on a
truncated polyhedral tessellation of the unit ball. The top plot shows the eigenvalues,
the bottom shows the deviation from the ground truth. Our method outperforms all
other discretizations, with results barely deviating from the desired values.
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Eigenvalue Reproduction Figure 5.14 shows the 34 smallest nonzero eigen-
values obtained with the different polyhedral Laplacians on hexahedral and
truncated tessellations of the unit ball. The Poly-Spline method is not included
in the comparison because the polygon/polyhedral meshes do not meet their
compatibility conditions (see description above). The results in Figure 5.14
demonstrate that our basis functions generate more accurate eigenvalues, with
significantly less deviation from the ground truth than those produced by com-

peting approaches.
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Figure 5.15: Displacements due to gravity computed by linear elasticity with Young’s
modulus 1e+10 and Poisson ratio 0.4999 on differently tessellated 2D bars. The top
row shows the results for our linear elements and the bottom row for our quadratic basis

functions.

Figure 5.16: Displacements due to gravity by linear elasticity with Young's modulus
5e+10 and Poisson ratio 0.4999 on differently tessellated bars consisting of tetrahedra,
hexahedra, and Voronoi cells. The left figqure shows the results for our linear basis
functions and the right for our quadratic basis.
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Linear Elasticity To go beyond Laplacian systems, we also evaluate our
method on a static linear elasticity simulation. The governing PDE for the
body () and a displacement vector field u are

V-o=f inQ,

with linear Cauchy strain € = ; (Vu + Vu') and linear material behavior & =
E : €. The material matrix E is built from the Young’s modulus E and Poisson
ratio v.

A challenging issue is the locking phenomenon, which can be observed for linear
elements when setting v close to 0.5. This phenomenon is shown for the rest
state of a bar, acted on by gravity, in the top row of Figure 5.15 and on the left of
Figure 5.16. This problem can be reduced by using higher-order basis functions
as shown in the bottom row and right column of the respective figures. For all
tessellations, our basis functions avoid locking artifacts.
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Figure 5.17: Geodesics in heat [CWW13] on a polygonal mesh. Quadratic basis func-
tions (left, center) lead to smoother results with less artifacts compared to the linear
version (right). All images have been rendered by evaluating the result on triangu-
lated and refined polygons.

Geodesics in Heat Because our basis functions, and specifically their gradi-
ents, can be evaluated at any point on the mesh, we can straightforwardly imple-
ment Geodesics in Heat [CWW13] for polygon meshes. In the original method
a constant gradient per face is normalized and integrated. With quadratic ele-
ments, we use numerical quadrature to integrate the point-wise dot product of
the normalized gradient of the diffused delta function and the gradient of the
basis vectors. Figure 5.17 compares results for linear and quadratic polygon
basis functions. In addition to supporting shorter diffusion time-steps (due to
the effective refinement that comes from adding degrees of freedom at edge
midpoints) the quadratic basis also produces smoother functions.
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Anisotropic Smoothing Typically, the metric tensor is defined by the posi-
tions of the mesh vertices and the virtual vertices. However, our implementa-
tion allows us to to modify the tensor for each triangle in the virtual refinement
to support anisotropic diffusion [CDR0O0]. For example, this allows us to im-
plement Line Integral Convolution as in [PKC+18]. Starting with a vector field,
we scale the metric tensor so as to shrink distances in directions parallel to the
vector field while preserving distances along perpendicular directions. Using
this metric, we anistotropically diffuse a random signal on the mesh, smoothing
the signal along the vector field’s streamlines. Figure 5.18 shows the resulting
visualization of the maximal curvature directions field on the fertility model.

Figure 5.18: Line Integral Convolution visualization obtained by anisotropically dif-
fusing a random color signal along the maximum curvature direction.

5.4.2 Multigrid and Timings

A specific choice of basis determines the structure of the stiffness matrix and
consequently the performance of a linear system solve. Here we evaluate this
relationship and assess the convergence behavior of our multigrid solver.

Multigrid vs. Direct Solve Our multigrid approach, introduced in Section
5.3.4, sidesteps the direct solution of the full system and employs a direct solver
at the coarse level only. In Figure 5.19 we illustrate its convergence behavior
using four polyhedral meshes (all hex-dominant except for the first one which
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Table 5.1: We compare statistics for the solution of a Poisson problem using different
basis constructions. The timings include solving times using supernodal Cholesky
decomposition and back substitution. For our method we additionally include timings
for our multigrid approach and report the time it takes to reduce the residual error to
|| = Xyef|| /7 ||Xrer|| < 1078 with respect to the direct solution.

Mesh V] Harmonic Lin. Virt. Ref. Diamond Quad. Virt. Ref.

time dof nnz time dof nnz time dof nnz time MG time dof nnz
Voronoi 2D 200k 0.57s 200k 2.6M 0.73s 200k 2.6M 4.3s 200k 7.6M 7.7s 3.2s 507k 12.1M
Voronoi 2D 800k 9.4s 800k 10.4M  9.8s 800k 10.4M  21s 800k 29.6M 36.7s 242s 2M 48M
Bunny 3D 80k 1.8 8k 2M 1.6s 80k 2M 6.2s 80k 59M  26s 3.6s 316k 17.6M
Kong 3D 160k 5.45s 167k 4.3M 4.44s 167k 4.3M 259s 167k 12M 97.6s 11.9s 662k 38M

10-4- = 35k vertices
5 80k vertices
—
SR = 160k vertices
= 1077 280k vertices
I
® 10-12-

T T T T
10% 15% 20% 25%

time (in % of direct solve)

Figure 5.19: Multigrid convergence for four polyhedral meshes of different size. Each
point represents a V-cycle and we report time relative to a direct solve of the full system
for each mesh. The relative error is measured by ||x — Xyef|| / || Xpef|| where Xy is the
direct solution.

contains pyramids, see Figure 3.13). We report timings of our multigrid ap-
proach for the solution of a volumetric Poisson problem, relative to the time
needed to solve the system using the direct supernodal Cholesky solver im-
plemented in CHOLMOD [CDH+08]. The solver exhibits the expected con-
vergence rate, with relative errors reducing exponentially until floating-point
precision is reached. In addition, it produces an accurate solution, with error
smaller than 1078 relative to the solution of the direct solve, but in a fraction
of the time needed by the direct solver. Setup times for the multigrid method
are included in the measurements, specifically the factorization of the stiffness
matrix at the coarse level.

Solving Times In Table 5.1 we compare statistics for the solution of a Poisson
problem using different basis constructions. The time it takes to solve the sys-
tem using a direct solver depends on the degrees of freedom (which manifest as
number of rows and columns) and the number of non-zeros (nnz). To define
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our quadratic basis functions we need to introduce additional nodes, which
leads to larger and denser systems. The superior convergence behavior of our
method therefore comes at the price of a more costly Poisson system solve
compared to methods that only use vertex nodes [AW11; GBD20; MKB+08;
BHK+20]. As we use a direct sparse Cholesky solver, discrete Laplacians with
the same non-zero structure give the same solve times. The Diamond Lapla-
cian introduces coefficients relating vertex nodes of adjacent elements (see Sec-
tion 4.5) and therefore leads to denser matrices.

As expected, the solve times of our quadratic method are higher for all exam-
ples due to the larger number of degrees of freedom and denser matrices. How-
ever, using the multigrid construction significantly lowers the computational
time. The timings listed in Table 5.1 report the time it takes to achieve a rel-
ative accuracy of 1078, typically requiring between 5 and 10 V-cycles. Since
we have already validated that our method generally yields superior accuracy,
and since the multigrid solver only requires factoring a matrix whose sparsity
structure matches that of matrices defined using linear elements, this leads to-
wards an overall improvement in quality at negligible increase in computation
time.

5.5 LIMITATIONS

As discussed in Section 5.3.3, we incorporate a Dirichlet regularizer scaled with
a very small ¢ = 1078 into our energy. This regularizer guarantees quadratic
reproduction on triangles and tetrahedra and other beneficial properties for
our system. However, it also affects the quadratic precision property of our
shape functions. While quadratic functions lie in the span of our basis, they do
have a non-zero Dirichlet energy. Therefore, it remains to be shown that the
chosen prolongation weights of our energy do not differ from those needed to
interpolate the quadratic function. Since we have to choose a ¢ to guarantee
the properties listed in Appendix B, it generates the possibility to interpolate
a function with non-continuous gradients but lower Dirichlet energies. While
parameters close to zero make the space of potentially interpolated functions ar-
bitrarily small, we cannot guarantee the quadratic precision property. A more
detailed discussion on this matter can be found in Appendix C.1.
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5.6 CONCLUSION

In this chapter we presented a new approach, called the quadratic virtual refine-
ment mehthod, for defining finite elements shape functions for general polyg-
onal and polyhedral meshes. In contrast to the linear approaches presented
in the previous chapters of this thesis, the basis we propose is quadratic and
exhibits the commensurate convergence properties. The key is defining con-
tinuous basis functions that are linear combinations of standard quadratic La-
grange functions on a virtual simplicial refinement, with weights defined by
solving a variational optimization problem encouraging the basis functions to
minimize gradient discontinuities along virtual edges. Leveraging the natural
hierarchical structure within our construction, we define a multigrid solver that
mitigates the loss of sparsity associated with higher-order shape functions. We
demonstrate the efficacy of our approach comparing numerical performance
for standard geometry processing applications requiring a discretization of the
Laplacian, applications in simulation requiring a more general stiffness matri-
ces, as well as applications that benefit from pointwise evaluation. Empirically,
our approach provides cubic convergence for general polygonal and polyhe-
dral meshes without the ensuing increase in computational complexity.

By focusing on the general construction of finite element shape functions our
approach provides a general framework that can be directly incorporated into
many applications in geometry processing and simulation.
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At this point, we have thoroughly investigated the potential of the linear vir-
tual refinement method to be extended to higher-order shape functions and
explored alternative numerical discretization schemes for the refined tessella-
tion. As we approach the conclusion of this thesis, our attention returns to the
original method introduced in Chapter 3. While we have investigated many
avenues and possible extensions of the linear virtual refinement method, we
have not yet extensively touched upon its degrees of freedom, particularly the
placement of the virtual vertex and the selection of the prolongation weights.
Our initial choices were based on empirical observations, as described in Sec-
tion 3.2.3, but, as the alternative weight computation from Chapter 5 demon-
strates, there might remain a lot of room for improvement. Thus, we reconsider
what the ideal selection for the degrees of freedom for the linear virtual refine-
ment method might be.

We made the central observation that the virtual triangulation of the polygons
allows us to utilize the extensive knowledge from the linear Finite Element
Method regarding triangle shapes. This, in turn, allows us to construct an opti-
mized version of our polygon Laplace operator. From linear FEM, it is known
that (and how) the shape of the elements (i.e., triangles) affects the accuracy
and numerical stability of the cotangent Laplacian [She02]: In general, the ra-
tio of squared edge lengths to triangle areas should be small. In this chapter,
we want to create virtual triangulations that minimize this ratio. Notably, this
measure has appeared before as the harmonic index of a triangle and has been
linked to the Delaunay triangulation [Mus97] and the discrete Laplace opera-
tor [BS07]. In particular, the sum of the harmonic indices across all triangles
in the mesh corresponds to the frace of the cotangent stiffness matrix [Ale19].
Using the minimization of the trace as the guiding principle, we derive opti-
mal positions for the virtual vertices within the polygons and optimal weights
to express these points as affine combinations of the polygon vertices. Addi-
tionally, we derive a smoothing scheme that optimizes the vertex locations (for
applications where this is permissible) based on the same principles.

We analyze how minimizing the trace affects the spectrum of the discrete
Laplace operator and compare this optimized Laplacian to the previously
introduced operators within the established test scenarios. Through our exper-
iments, we demonstrate that for low-quality polygon meshes, the optimized
Laplacian consistently and significantly enhances robustness and accuracy —
with only negligible computational cost for constructing the discrete operator
and no additional computational overhead for solving the involved linear
systems.
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Individual Contribution [ investigated and optimized the linear virtual refine-
ment method in close cooperation with Dennis Bukenberger and Sven Wagner, super-
vised by Marc Alexa and Mario Botsch. I am responsible for the mathematical proofs
and derivations for the optimized degrees of freedom of the method, as well as the energy
minimizations provided in this chapter. Many ideas were motivated by the thorough
results provided by Sven Wagner in his Bachelor’s thesis, which I supervised. Dennis
Bukenberger implemented and developed the proposed smoothing algorithm. The imple-
mentation of the Laplace optimization was a collective effort by Sven Wagner, Dennis
Bukenberger, and me.

Corresponding Publication This chapter is based on the following publication:

Bunge, A., Bukenberger, D. R., Wagner, S. D., Alexa, M., and Botsch, M. (2024)
“Polygon Laplacian Made Robust.” Computer Graphics Forum 43(2).

6.1 RELATED WORK

As established in the introduction, this chapter aims to enhance the numerical
accuracy and stability of the linear virtual refinement method. Consequently,
it becomes necessary to explore the nuances of numerical analysis on polygon
meshes and their associated challenges. Moreover, although the concept of
polygon Laplacians has been thoroughly investigated up to this point in the
thesis, the idea of polygon mesh smoothing approaches has yet to be discussed.
Therefore, we want to address this gap by examining relevant research in this
area.

Numerical Accuracy and Robustness On Polygons The shape of a simplex
can affect the quality of linear FEM discretizations for triangles and tetrahedra.
Shewchuk [She02] analyzed various aspects of this phenomenon, which were
later expanded on in the exhaustive survey by Sorgente et al. [SBM+23]. How-
ever, Sorgente et al. also noted that many concepts used to evaluate the geomet-
ric quality of lower-degree polytopes cannot be easily transferred to generic
polygons. To address this issue, several works developed shape quality met-
rics specifically for surface and volume polytopes, such as Lipnikov [Lip13],
Mu et al. [MWW15], and Gillette and Rand [GR17]. In a recent study, Attene
et al. [ABB+21] investigated the correlation between the performance of VEM
[VBM13] and the underlying polygonal tessellation. This chapter expands on
this type of analysis and establishes a geometric link between polygons and the
linear virtual refinement method.
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Polygon Mesh Smoothing The ability to enhance the quality of a mesh by im-
proving, or smoothing the shapes of the individual faces, is a valuable tool in ge-
ometry processing. The effectiveness of these algorithms has been extensively
studied, particularly in 2D. This extends to meshes in 3D when the placement
of (interior) vertices is less critical, e.g., tessellations of planes in CAD-like ob-
jects as long as sharp feature edges and corners are retained. Mesh smoothing
impacts numerical stability and discretization error, a crucial consideration in
computational simulations. Numerous approaches have been introduced for
triangle meshes, with some extending to quads or polygonal meshes.

Zhou and Shimada [ZS00] focus on optimizing the inner angles within mixed
2D meshes. It has been shown to be effective for triangles, as adjusting the
angles generally improves the ratio of edge lengths to area (Section 6.2). The
extension to quads is based on introducing virtual diagonals, and it is unclear
how to extend this concept to general polygons. The works of Garimella et
al. [GSK02; GSK04; GS04] aim for optimizing triangle, quad, mixed and poly-
gon manifold surface meshes. They formulate an objective function to mini-
mize the condition numbers of local Jacobian matrices, which then indirectly
improve the global mesh quality. However, by construction, this approach
can only incorporate direct vertex neighbors and, therefore, does not gener-
alize well for larger polygons, limiting the effect on the condition of the global
stiffness matrix. Further, Knupp et al. [KMS02] proposed mesh optimization
using Reference Jacobian Matrices, which helps preserving mesh details but
is not suitable for polygon meshes due to ambiguous local Jacobian defini-
tions. Vartziotis et al. [VAG+08] propose the Geometric Element Transforma-
tion Method (GETMe) to successively regularize low quality triangles by itera-
tively applying a geometric transformation until a user defined quality level is
reached. Generalizations for general polygonal, tetrahedral [VW12] and later
general polyhedral meshes are suggested, but the official GETMe implementa-
tion currently only supports smoothing 2D polygonal shapes with fixed bound-
ary vertices. Our approach sets itself apart by optimizing the complete polygo-
nal shape, and not only the interior angles at vertices. It is specifically tailored
for the use of our proposed Laplace operator, taking into account the entire
polygonal configuration in relation to the virtual vertex.
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6.2 ACCURACY AND ROBUSTNESS ON TRIANGLE
MESHES

For linear FEM, Shewchuk has analyzed how the shape of triangles affects var-
ious aspects of the discretization [She02]. He argues that for the interpola-
tion error it is more important to control the error in the gradients and gives
a smooth, size-independent measure of the quality of an element in this respect
[She02, Tab. 4:]

|tije

20 120, 12
(!61']'\ \ejk| k] )

where larger ratios indicate better shaped triangles. As before, the scalar |eij]
denotes the length of an edge ¢;; and ‘tijk| the area of a triangle t;j;. For analyz-

ing (or improving) the stiffness matrix” condition number, again with a smooth
and scale-independent measure, he suggests [ She02, Tab. 4:]

, (6.1)

Wl

(6.2)

The condition number x of a quadratic matrix A is defined as the ratio between
its largest and smallest eigenvalue
Amax (A
K ( A) — max( )
Amin (A)
and is a common measure to quantify numerical stability. Equation (6.2)

is inversely proportional to the harmonic index of the triangle [Mus97; BS07;
CXG+10]:

(6.3)

”2 . 2 2
ﬂ(tijk) = |el]| +‘e]k‘ +‘elk‘ =4 2 COtGi. (64)

| Fiji ‘ v; Etiji

Notice that the two quality measures in Equation (6.1) and Equation (6.2) dif-
fer only by how the average is taken over the squares of the three edge lengths.
By the inequality of arithmetic and geometric means (AM-GM inequality), the
arithmetic mean in the denominator of the condition quality measure (6.2) is
not smaller than the geometric mean in the denominator of the interpolation
error measure (6.1). This means that minimizing the harmonic index 7 (#;;x)
improves the condition of the stiffness matrix w.r.t. the triangle tijk, and gen-
erally also improves the accuracy of the gradient in the solution. This is the
case, because triangles with large angles contain points where the gradient in-
terpolation error increases immensly [She02]. Since the minimization of the
harmonic index avoids angles close to 0 and 180 degrees, these shapes do not
occur, leading to well-behaved gradients.
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The work of Alexa [2019] shows that the trace of the stiffness matrix (per ele-
ment or for the whole mesh) is proportional to the sum of the harmonic indices
of the triangle(s):

H(T) = Y n(tij) (6.5)
ti]*kET

= 4 ) (cotb; + cotb; + cotby) (6.6)
ti]'kET

= 41tr(S%). (6.7)

In the following, we will use the idea of minimizing the trace of the triangle
cotangent operator for optimizing the operators for polygon meshes.

6.3 ACCURACY AND ROBUSTNESS ON POLYGON
MESHES

In Section 6.2 we established that a smaller trace of the cotangent stiffness ma-
trix generally indicates a numerically preferable triangle mesh. In this section,
we aim to investigate whether the same observation holds for the trace of the
polygon stiffness matrix given by the linear virtual refinement method (see
Equation (3.7)) and whether we can establish a similar connection to the ge-
ometry of the polygon.

When dealing with triangles, the cotangent Laplacian is solely based on the tes-
sellation and cannot be altered unless the triangle mesh is modified. However,
when working with polygons, we have two degrees of freedom to consider: the
affine weights used in the prolongation matrix and the placement of the virtual
vertex. As a result, we can optimize these parameters with respect to the trace
of the polygon stiffness matrix without changing the polygon mesh and exam-
ine how it affects the Laplacian.

6.3.1 Optimal Prolongation Weights

We will start with the affine weights for the virtual vertex. As in Section 3.2.3,
assume we are given a polygon f € F with vertices (vy,...,0, f) and its cor-
responding virtual face vertex vy. Let S* € R HDX0+1) denote the local

cotangent stiffness matrix constructed on the virtual triangulation and w; =

T
<w1, e, Wy f> € R"/ the set of affine weights. We build the local prolonga-

tion matrix P € R"+DX"f a5 defined in Equation (3.5) and obtain the local

polygon stiffness matrix S as established in Equation (3.7).
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The objective is to minimize the trace of S© with respect to the individual pro-
longation weights w; € wy. We first rearrange the polygon stiffness matrix into
a similar pattern as in Equation (5.3): We divide the matrix into the cotangent
entries related to the existing polygon vertices and a matrix that redistributes
the values associated with the virtual vertex vy:

S° = PTS*P = S84, +W. (6.8)

sub

The matrix S, is the symmetric 1y x 1y submatrix of S* excluding the row
and column associated with the virtual vertex. In our setting, the cotangent
weights associated with the virtual vertex are located at row/column (1 + 1)
of S*. We will use the vector

.
_ A A n
s = (sllnfﬂ,...,snﬂnfﬂ) € RY

and its respective entries (s, ..., 5 f) to refer to the first n £ entries of the virtual
vertex column. The matrix W € R/ *"*f can be defined as

nf
2w;s; — wl2 Z Sk ifi =j,
— k=1
W = " (6.9)
WiSj + Wjs; — W;W; Z sy otherwise,
k=1

and redistributes the values of the virtual vertex onto the original 7y nodes of
the polygon.

We minimize the trace of the polygon stiffness matrix with respect to the affine
weights wy, ..., wy, by setting the respective partial derivatives to zero. Here
we only have to consider the trace of the matrix W, since S, does not depend
on the weights w;:

otr(S°)  otr(W)
awi B awi

n
f
= 281' - ZZUZ' 2 S]'. (610)
j=1

Setting Equation (6.10) to zero leads to the trace-optimal weights

w; = —(Cot Kinp+1 + cot ﬁi,an) _ S; . Si (6.11)

nf nf
— Ll cotaj 1 +cotBiu 1 Ll

with w € R referring to the negated (11 + 1)-th diagonal entry of S* associated
with the virtual vertex.

These trace-minimizing weights are well-known as the discrete harmonic coor-
dinates [PP93; EDD+95] and can be computed through Equation (6.11) with-
out numerical optimization, in contrast to the least norm weights suggested in
the original linear virtual refinement method (see Equation (3.11)). Note that
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these weights are affine, since they by construction sum to one, and that the
denominator w is guaranteed to be non-zero as long as the virtual vertex v
is positioned in the kernel of a star-shaped polygon. We point out that using
these weights in the prolongation step simplifies the entries of the matrix W to

2 s .

st/w ifi = 1

W; =< . TV e, (6.12)
sisj/w otherwise w

which we will exploit in the upcoming section.
6.3.2 Eigenvalues of the Polygon Stiffness Matrix

In this section, we uncover a geometric link between the local eigenvalues of
the polygon stiffness matrix and the polygon itself. Assume the local prolonga-
tion matrix P on the polygon f is obtained with the discrete harmonic weights
established in the previous section. Given that S°, SsAub’ and W are all n F XNy
Hermitian matrices and S° = S, + W, we can make the following observa-
tion: Let p1;, v; and p; be the respective eigenvalues of S°, 82, and W, ordered

as follows:

S = T (6.13)
SSAub : 1/1 Z e Z an—l Z an, (614)
W: p12- 2 pn12 P (6.15)

Applying Weyl’s inequality [Wey12] yields
Vi + P, < ui < vi+py, i:1,...,nf. (6.16)

which links the individual eigenvalues of the polygon stiffness matrix S° to the
eigenvalues of the submatrix SZ .

But what about the eigenvalues of W? Using the discrete harmonic coordinates
as prolongation weights allows us to directly determine the eigenvalues p;. As
an outer-product matrix (see Equation (6.12)) W has rank one and a kernel of
dimension ny — 1, leading to 11y — 1 vanishing eigenvalues. The only remaining

non-zero eigenvalue is

2
s
with the eigenvector s, since
1 2
Ws = (—SST) s = Ms. (6.18)
w w

The question remains whether p is the largest or the smallest eigenvalue of W.
Since S* is positive semi-definite, w is negative, which means that p, ;= pis
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negative as well and is therefore the smallest eigenvalue of W. This allows us
to simplify Equation (6.16) to

2
1/1--|-M < u <y fori=1,...,nf. (6.19)
Therefore, as a first conclusion, we can observe that the i-th eigenvalue y; of the
polygon stiffness matrix is confined by the i-th eigenvalue v; of the submatrix
SsAub'

Conveniently, the matrix S, is an n¢-dimensional principal submatrix of the
(nf + 1)-dimensional symmetric cotangent stiffness matrix $*, allowing us to
apply Cauchy’s Interlace Theorem [Hwa04 ], which reveals the following eigen-

value relationship:

with A; denoting the 7¢ + 1 eigenvalues of the cotangent stiffness matrix S*.
Merging this inequality with the upper and lower bounds from Equation (6.19)
results in the final bounds
2 2
Is] Is]

)\i+1+7 < 1/1'—1—7 < u <vi <A i:1,...,nf. (6.21)
We are now able to draw a powerful conclusion: All eigenvalues of the polygon
stiffness matrix S are less than or equal to the corresponding eigenvalues of
the cotangent stiffness matrix S°.

Therefore, the upper bound in Equation (6.21) directly establishes a geomet-
ric connection between the stiffness matrix and the polygon, albeit indirectly
through the virtual triangle fan. Polygons that allow their virtual vertex to form
a high-quality triangle fan (by the standards established in Section 6.2) can
minimize the trace of the virtual cotangent stiffness matrix and, consequently,
improve that of the polygon stiffness matrix. Not only that, but a good virtual
triangulation also implies a cotangent matrix of higher quality, which also im-
proves the performance of the polygon Laplacian. Furthermore, the condition
number of the polygon stiffness matrix is expected to improve proportionally
to that of the cotangent Laplacian.

6.3.3 Optimal Choice for Virtual Vertex Placement

The findings from the previous section establish a suitable objective function
for the remaining degree of freedom: the placement of the virtual vertex. The
point that minimizes (within the kernel of the polygon) the trace of the cotan-
gent stiffness matrix will also minimize the harmonic index of the virtual trian-
gle fan (see Equation (6.5)) and consequently further improve the quality of
individual (virtual) triangles.
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We start with the case of a planar polygon and consider the cotangent stiffness
matrix $* on the virtual triangles 7 of a polygon f with virtual vertex vs. We
want to minimize the following energy with respect to the virtual vertex posi-

tion xy:

E(xf) =tr(S*) = ) ) cot(6;). (6.22)

teTyvjct

We minimize this energy using the projected Newton method, which ensures a
positive definite Hessian. In order to prevent virtual triangles from flipping, we
start the minimization from the squared area minimizer (see Equation (3.11)),
which is guaranteed to lie in the polygon’s kernel, and return an infinite cost
during the line search in case of negative or degenerate triangle areas. This
avoids artifacts caused by the flipped triangles and guarantees the validity
of our prolongation weights, since w cannot become zero. Combining Equa-
tion (6.22) and the penalty term leads to a virtual vertex position that mini-
mizes the trace of the stiffness matrix within the polygon’s kernel.
As mentioned by Hormann and Floater [HF06], the discrete harmonic coordi-
nates can represent points in the interior of a polygon as long as the resulting
virtual triangle areas are positive and the edges connecting the virtual point to
the polygon vertices remain non-degenerate. While a convex polygon satisfies
these criteria for any point in its interior, star-shaped polygons guarantee these
properties solely within the element’s kernel. This condition is non-negotiable
since reproducing the virtual vertex through the prolongation weights is nec-
essary to retain the linear precision property for the polygon Laplacian (see
Section 3.2.8).
The above approach, however, does not extend to polygon meshes embedded
in R3 with potentially non-planar faces. First, we lose the notion of signed trian-
gle area and flipped triangles. Second, for non-planar polygons only a limited
set of points can be represented by discrete harmonic coordinates: Assuming
that the virtual point x; is represented by the weights w;, and exploiting that
the discrete harmonic weights are just the (normalized) cotangent weights for
discretizing the Laplacian, we get

nf
) WiXj = Xy
=1

nf S]’ 1’lf S]'
& Y Ixi=) “2x
j f
Sw aw (6.23)

1y

<~ 25]'<X]'—Xf>:0
]:

~ AXf =0.

As the cotangent Laplacian corresponds exactly to the gradient of surface area
[DMS+99], the last condition means that the virtual vertex has to minimize
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Figure 6.1: Left: Non-planar polygon and its orthogonal projection with maximum
area. The projection’s virtual vertex position Xy is the trace minimizer of the planar
cotangent stiffness matrix. Right: The virtual vertex position Xy is obtained by multi-
plying the original vertices with the discrete harmonic weights of the projection.

the sum of virtual triangle areas for the weights (6.11) to be able to reproduce
the point. This is not an issue in the planar setting, where any point leads to
the same area. For non-planar polygons, however, the trace minimizer and the
area minimizer do in general not coincide, leading to a discontinuous energy
when slightly deviating from a planar configuration.
We suggest an alternative approach that is able to retain linear precision: Given
anon-planar polygon f, we consider its orthogonal planar projection with max-
imum surface area, as proposed by Alexa and Wardetzky [ AW11]. To this end
we project the polygon vertices x; along the polygon’s normal ny, which itself
is defined in terms of the vector area ay:

ar = 1 2 <Xi X X(i+1) mod n ) ;o Nyp = a—f, X; = X; — nfn}xi. (624)
2 viEf ! Haf

For the planar configuration (X, ...,%,) we minimize the trace of the stiffness
matrix with respect to Xy as described above. The resulting discrete harmonic
weights W are then used to define the virtual point for the original, non-planar
polygon as xf :=}_; W X;.

For non-planar polygons that are still relatively close to a planar configuration,
the virtual vertex will only slightly deviate from the trace minimizer of the
orthogonal projection, as illustrated in Figure 6.1. This approach, therefore,
avoids the discontinuity between the trace minimizer and the area minimizer.
However, as the polygons become increasingly distorted, the results from this
approach may become less favorable as the positions of the original and pro-
jected vertices increasingly differ. To further stabilize our approach, we inte-
grate the fallback of comparing the trace of the optimized local polygon stiff-
ness matrix to that of the original method. If the new trace is higher, we use
the original point and weights instead. However, this is only necessary if the
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Figure 6.2: In a mixed polygonal mesh (left) we also incorporate virtual vertices in
the one-ring (center) whereas other methods often only consider real vertices (right)
[ Knu00; GS04; VAG+08].

orthogonal projection of the polygon does not satisfy our initial assumption of
being star-shaped, and almost never occurred in our experiments.

Although our energy minimizing requires an iterative approach, the implemen-
tation of is quite straightforward. Using the maximum orthogonal projection,
we can express everything in an intrinsic 2D coordinate system, making the
2 x 2 Newton solver converge in just a few steps. The gradients and Hessian
of Equation (6.22) can be derived analytically [Cral8], as well as the Hessian’s
eigenvalues required for the projection step.

6.4 POLYGON MESH SMOOTHING

In the previous sections we explored the intricate relationship between virtual
vertex positions, affine prolongation weights, and the eigenvalues of the poly-
gon Laplacian. We established that reducing the trace of the stiffness matrix
improves the numerical quality of the Laplacian. So far, however, we have only
focused on the degrees of freedom of the discrete Laplace operator itself, not on
the “real” non-virtual vertices of the polygon mesh. If we also take these into
account when optimizing the trace of the stiffness matrix, we can improve the
numerical conditioning much further. Consider a polygon mesh M = (V, F)
with m vertices and their associated positions xy,...,X;;, as well as a virtual
triangulation M1 = (V2,T) generated by inserting a virtual vertex into each
polygonal face. Following the insights from Sections 6.2 and 6.3, we want to
optimize the trace of the cotan Laplacian on the virtual triangulation 7 with
respect to the positions of the polygon vertices v; € V, as shown in Figure 6.2,
center. The trace of the global cotan stiffness matrix can be formulated as the
energy

E(xt,.. Xm) = Y, ) cot(0;), (6.25)

teT U]'Et
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which sums up local cotangent components of the corner angles 6; at the ver-
tices v; within all virtual triangles t € 7. We minimize this energy in a Newton-
like manner, but decouple the relationship of real and virtual vertices in an al-
ternating optimization scheme, such that each Newton iteration has these two
steps:

1. Minimize trace (as in Equation (6.25)) with respect to all real vertex po-
sitions x1,...,X;, while keeping (the affine weights of) virtual vertices
fixed.

2. For each face f, minimize trace (as in Equation (6.22)) with respect to
virtual vertex positions x; and weights w, while keeping the real vertices
fixed.

This formulation not only simplifies the implementation, it also increases the
robustness of the numerical optimization. We implement the smoothing (Step
1) using TinyAD [SBB+22].

When optimizing polygon meshes embedded in IR3, we have to restrict vertex
movement to the mesh surface to prevent deviation of the optimized mesh from
the original geometry. This is typically done by restricting vertex movement
to their tangent planes and/or re-projecting vertices to the original mesh after
each iteration. For technical models with sharp features, however, this will not
accurately preserve feature edges and corners.

We propose to instead adapt the quadric error metric [GH97] to our setting
and to directly incorporate it into the optimization. At initialization time, each
vertex v; is assigned a 4 x 4 quadric Q; built by summing up the quadrics of
v;’s incident faces f. As proposed by Garland and Heckbert [GH97], the face
quadrics are constructed from area-weighted normal vectors, i.e., from the vec-
tor areas ay. To optimize the trace of the stiffness matrix while keeping vertices
on the surface and on the features, we minimize the energy

E(Xl, .. .,Xm) = Z Z cot(f)]-) +7T Z Q](X]) ’ (626)
teT vjet vjEV
where
o) = <" (}) (627)

denotes the quadric error of vertex position x with respect to the quadric Q.
As the T parameter can be adjusted to fine-tune the optimization process, it
is important to note that the sum of cotan values often tends to become rela-
tively large. Consequently, to effectively balance the influence of cotan sums
and quadric errors, higher T values perform better and we used T = 10 for
all results. While the quadrics could be updated after each Newton iteration,
we typically keep them fixed to restrict the mesh optimization to rather local
modifications. Figure 6.3 compares the results of unconstrained (7 = 0) and
quadric-constrained (T = 10°) optimization. While in the unconstrained case
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Figure 6.3: Without constraints, surface meshes may get disfigured (center). Due
to the quadrics energy, vertices move only on the surface and sharp features are pre-
served automatically (right). The condition number « of the polygon stiffness matrix
S© significantly improves on our smoothed tessellation compared to the input mesh.

a lower condition number « is achieved, this comes at the price of an unaccept-
able deviation from the original shape. Figure 6.4 compares to the polygon
mesh smoothing of Garimella et al. [GS04]. Their energy formulation for the
apex vertex has multiple equivalent minima on the lateral sides of the pyra-
mid, which crumples down the pyramid in one iteration and would eventually
flatten it completely. Our energy is minimal at the apex itself due to the sym-
metry of the constellation, thus the vertex is not moved (even without quadric
constraints).

A= VAN

Figure 6.4: Results of Garimella [ GS04] (left) and ours (right). As highlighted, their
energy function has multiple equivalent minima for the apex vertex on all four sides,
thus crumples the pyramid, whereas ours remains straight as the minimum is exactly
at the top.

6.5 RESULTS AND DISCUSSION

In this section we present experiments, comprehensive comparisons, and dis-
cussion of the results, highlighting the effectiveness of our approach on mixed
polygon meshes.
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6.5.1 Optimized Polygon Laplacian

We expand our test setting with the final polygon Laplacian of this thesis and
analyze its performance and stability. As before, we compare our results to the
previously introduced state-of-the-art operators.

HexStretched Plane HexCompressed Plane

2% 100 3x10' 4% 10! 2x1013x10 __6x 100 102
Concave Plane Voronoi Plane

10! 102 102
Inverse mean edge length
[Alexa et al. 2011 A = 2] [deGoes et al. 2020 A = 1]
[Alexa et al. 2011 A = 0.5] == [deGoes et al. 2020 A = 0.1]
=@= Harmonic =@)= Lin. Virt. Ref.
-’- Diamond Robust Lin. Virt. Ref.

Figure 6.5: Poisson solve for the 2D Franke test function in log-log scale. The errors
were evaluated on different polygon tessellations of the unit plane.

Poisson Equation We consider the discretized Poisson equation for the Lapla-
cian matrix with Dirichlet boundary conditions. We solve for the discretization
of the analytically calculated Laplacian of the 2D Franke test function [Fra79],
sampled at the vertices. The convergence plots in Figure 6.5 show the L, er-
rors rates on different planar tessellations. Our method consistently maintains
low error rates and outperforms all other operators on several meshes. How-
ever, the accuracy of more regular shapes, like the Voronoi mesh, does not sig-
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nificantly differ from that of the original method. The operator of de Goes
et al. [GBD20] outperforms our method on two tessellations for the hyper-
parameter A = 1. However, on the other tessellations this parameter leads
to less favorable results, while our method remains one of the most accurate.

Hexagonal Sphere . HexAnisotropic Sphere
A4 Py 10— I p s p s

1072

1073

1074

1
Concave Sphere

107!

10! 4x10°  6x10° 10!
Inverse mean edge length
[Alexa et al. 2011 A = 2] [deGoes et al. 2020 A = 1]
[Alexa et al. 2011 A = 0.5] == [deGoes et al. 2020 A = 0.1]
-.- Harmonic =@)= Lin. Virt. Ref.
-‘- Diamond Robust Lin. Virt. Ref.

Figure 6.6: Poisson solve for the spherical harmonic function Yz in log-log scale on
different tessellations of the unit sphere.

Spherical Harmonics Figure 6.6 shows the obtained results. As for the pla-
nar meshes, our operator is able to outperform the other operators on several
meshes. In the other cases, it is either on par with the optimized version of
Alexa and Wardetzky’s operator [AW11] or outperforms the DEC Laplacians.
The Diamond operator is able to yield the lowest error on Voronoi spheres.

Geodesics in Heat For this evaluation, we additionally compare the results
of the introduced polygon Laplacians to those of a triangle approach. We re-
fine the mesh by triangulating polygons to minimize squared triangle areas
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Figure 6.7: Geodesics in heat method in log-log scale for planes (left) and spheres
(right).
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[Lie03] and employ the Laplacian based on the intrinsic Delaunay triangula-
tion [BS07], using the geodesic in heat implementation of libigl [JP+18]. The
results are presented in Figure 6.7. Comparing the polygon Laplacians, our
method and the two DEC operators with optimized hyper-parameters gener-
ally perform best, except in the case of the Voronoi Plane, where the Laplacians
obtained with recommended DEC parameters outperform our method. How-
ever, these Laplacians had higher errors on other tessellations. The Diamond
Laplacian also achieves competitive accuracy, especially for spherical meshes.
All polygon approaches are bested by the intrinsic Delaunay approach on pla-
nar meshes but remain competitive on spherical tessellations. Comparing our
approach to the original linear virtual refinement method, we found that our
method consistently improves the accuracy, with only a few exceptions on very
ill-conditioned meshes like the Voronoi sphere.

Numerical Stability We evaluate the numerical stability of our proposed
polygon Laplacian by analyzing the condition number of its involved com-
ponents, defined in Equation (6.3). Note that the smallest eigenvalue of
the stiffness and Laplacian matrices are zero due to their one-dimensional
kernel, so we consider the minimal nonzero eigenvalue. Figure 6.8 displays
the condition numbers of the respective stiffness matrices of the different
Laplace operators on the previously presented test meshes. Figure 6.9 shows
the condition numbers of the strong form of the respective Laplacians, which
includes the individual mass matrices. Further examples regarding the
condition number of our approach and the original linear virtual refinement
method can be found in Figure 6.13. Our approach consistently improves
the conditioning of the polygon stiffness matrix compared to the original
method. However, we observe that the DEC operators yield lower condition
numbers for lower hyper-parameters. An improvement in the conditioning of
the strong form (M®) ! 8© of the Laplacian cannot be guaranteed. While often
observed, as shown in Figure 6.9, our optimization primarily focuses on angle
quality. This can lead to smaller virtual triangles, for example, when the trace
minimizer avoids acute angles at the virtual vertex by moving it closer to a
polygon edge. These smaller triangle areas affect both the smallest eigenvalue
of the stiffness matrix S° and the eigenvalues of the mass matrix M, which
can lead to potentially increased condition numbers of the combined matrix
(M®) ! 89. Since we are using the lumped version of the mass matrix, the indi-
vidual eigenvalues of M are the vertex areas on the diagonal, i.e., the sum of
incident faces” areas. The conditioning of the stiffness matrix is closely related
to the convergence rate of iterative solvers like conjugate gradients [She(2],
meaning that well-conditioned matrices should cause a faster convergence.
We verify this correlation by solving the Poisson equations mentioned above
with the conjugate gradient method and compare the number of iterations
until convergence with the condition numbers of the global stiffness matrices.
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We observed that when condition numbers improved by 10-50 % with the
help of our new method in comparison to the original linear virtual refinement
method, the number of iterations decreased by 8-15 %.
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Figure 6.8: The condition number x(S°) of the respective polygon stiffness matrices
on planar (left) and spherical (right) polygon meshes.
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Figure 6.9: The condition number x (L) of the respective point-wise polygon Lapla-
cians on planar (top) and spherical (bottom) polygon meshes.
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Figure 6.10: 2D smoothing results on a mixed polygon mesh using Smart Laplace
[VAG+08], GETMe [ VAG+08], and our method. Further included is a version (L)
where boundary vertices are also allowed to move along the boundary (not possible with
GETMe).

K 16,467 P 20475 K 14,591
Figure 6.11: The polygonal input mesh on the left and our smoothed result on the
right. Applying tangential smoothing [DVB+13] on the virtual triangulation may

lead to bent polygons (center).
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6.5.2 Polygon Mesh Smoothing

Figure 6.10 illustrates a comparison of smoothing results on a mixed polygon
mesh generated with Smart Laplacian, GETMe, and our method. Smart Lapla-
cian and GETMe are both by Vartziotis et al. [VAG+08], with GETMe being
considered as a state-of-the-art method in mesh smoothing [Lo14; SBM+23].
However, the official implementation currently only supports 2D input. Fur-
ther, the boundary vertices are fixed during the optimization. Our approach
easily allows for the integration of boundary adherence conditions, such that
these vertices are also allowed to move. For the optimization, this additional
degree of freedom can further improve the polygon constellations, shown by
the condition numbers of our polygon stiffness matrix x(S°), which we refer
to as «.

In Figure 6.12 we compare our methods to simple explicit Laplacian smoothing
and the methods of Knupp [Knu00] and Garimella et al. [GS04]. While all of
the other methods were also intended for polygons, the energy term for a re-
spective vertex only incorporates its direct one-ring neighbors and neglects the
rest of the polygon (see Figure 6.2). Especially on challenging inputs, featur-
ing non-convex polygons, this often breaks the optimization for these methods.
Therefore, the results for Knupp and Garimella had to be generated with a pre-
ceding step to repair non-convex faces.

A simpler approach on smoothing could be to apply established triangle
smoothing algorithms on the virtual triangulation and unrefine the mesh
afterwards. However, common techniques for triangles, such as the tangential
smoothing approach by Dunyach et al. [DVB+13], can result in scenarios
where vertices slide over sharp edges or high curvature features, as shown in
Figure 6.11 (center). While the feature is preserved in the smoothed triangle
mesh, unrefining it (removing the inserted vertices) leaves us with bent
non-planar polygons. Increased non-planarity and ill-shaped polygons may
also negatively impact the mesh conditioning, as shown with the condition
numbers given in the bottom row of Figure 6.11.

In Figure 6.13 and 6.14, we present examples of our procedure’s input-output
pairs, complemented by bar plots that offer comparisons with alternative
smoothing strategies. These comparisons encompass both the outcomes of the
optimization processes and the condition numbers of the stiffness matrices
of the original linear virtual refinement method and our improved version.
Notably, our mesh improvement strategy is meticulously tailored to comple-
ment our enhanced Laplace operator, resulting in substantial improvements
when applied together. In Table 6.1, we show that in addition to improved
condition numbers of the weak and strong form of the polygon Laplacian, the
accuracy of Poisson solves on planar and spherical meshes is enhanced on the
optimized mesh compared to the original tessellation.
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Level k(S°) x(L°) L, error Type
a| 10312 12068 0.00207291
~ b 2084 2432 0.002134 34 Plane
s C 226 358 0.00201959
g a| 4284 5776 0.02049460
S b 782 1006  0.02210920 Sphere
C 187 323 0.01565610
a| 43091 53099 0.00058499

13893 18576 0.00058063 Plane
898 1806  0.000549 82
25877 55648 0.01557880
13372 27876 0.01732200 Sphere
317 350 0.00781903

Voronoi 3
N T oln T

Table 6.1: We analyze condition numbers and accuracy on two Voronoi planes and
spheres (see Figure A.1), respectively. Numbers are given on the unaltered mesh for
the (a) linear virtual refinement method, (b) our new Laplacian and (c) our Laplacian
on the optimized tessellation. Our optimization yields improvements in both condition
numbers and accuracy.

Source Laplace

Figure 6.12: 2D manifold smoothing results on a mixed polygon mesh using Laplace
smoothing, Knupp’s [ Knu00], Garimella’s [GS04], and our method; all using surface
Quadrics, respectively. GETMe is not included as the official implementation only
supports 2D input.
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Source Laplace Knupp Garimella Ours

Source Laplace Knupp Garimella Ours

Figure 6.13: Sources are shown on the left and our smoothed results on the right. The
fertility mesh consists of mixed polygons and the fandisk is a quad-dominant mesh.
The plots show condition numbers x on results of different smoothing strategies for the
Laplace operator obtained with the initial virtual linear refinement method W and with
our improvements M.
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gear

Source Laplace Knupp Garimella Ours

Figure 6.14: The source of the gear mesh is shown on the left and our smoothed results
on the right. The gear wheel is a random pick from the quad-mesh dataset of Pietroni et
al. [PNA+21].The plot on the right shows condition numbers x on results of different
smoothing strategies for the Laplace operator obtained with the initial virtual linear
refinement method W and with our improvements M.

6.5.3 Timings

With our current implementation we report the following performance: As
elaborated in Section 6.3.3, the optimal position for our proposed virtual ver-
tex is determined via a polygon projection and optimizing for a trace minimiz-
ing point. Compared to the original method, which solves for a squared area
minimizer and least norm weights, our matrix assembly is on average about
10 % slower. Note however, that assembly costs are negligible (in the range
of milliseconds) compared to solving times (several seconds), which stay the
same. The time for the smoothing iteration strongly depends on the condition-
ing and size of the given input mesh. With our single-core implementation (us-
ing TinyAD [SBB+22]) the input meshes used in our tests, like Voronoi spheres,
the horse, fertility or fandisk terminate with less than 50 iterations in 2 to 10 sec-
onds. For the rocker-arm (Figure 6.11, bottom), 709 iterations finished in 1400
seconds. However, this can be improved by either adjusting the termination
criterion, as the most improvement is achieved within the first few steps, or a
dedicated parallelized implementation. Additionally, not relying on TinyAD
and using the analytic derivations instead will also lower the computation time.
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Figure 6.15: Strongly disfigured polygons, as the saddle shape on the left, may induce
a max-area projection (right) that is self-intersecting, thus non-star-shaped.

6.6 LIMITATIONS

While our method can handle non-planar and non-convex polygons and gener-
ally improves the stiffness matrix’s accuracy and condition number, there are
some limitations. First, the shape of the polygons is limited to those that result
in star-shaped faces after the planar projection to avoid negative triangle areas.
Challenging configurations are extremely disfigured saddle-shaped polygons
that, when projected, result in tangled and self-intersecting shapes. This is,
however, more of a theoretical issue as we have yet to find such shapes in the
wild, and the example in Figure 6.15 is manually constructed. Secondly, neg-
ative discrete harmonic coordinates can cause negative mass matrix entries on
ill-conditioned meshes. Notably, such occurrences are infrequent; we observed
them only on a single face. While relatively large, this particular polygon con-
tained an almost degenerating edge. The negative weight associated with the
virtual vertex overpowered the area of the existing node, resulting in a nega-
tive entry despite the absence of flipped triangles. The mass matrix, and conse-
quently the strong form of the Laplacian, are then no longer positive/negative
(semi-)definite.
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6.7 CONCLUSION

In this chapter, we optimized the numerical quality and accuracy of the poly-
gon Laplacian based on the linear virtual refinement method prestend in Chap-
ter 3. We showed that minimizing the trace of the polygon stiffness matrix es-
tablishes a direct link to the geometry of the polygon through the virtual trian-
gle fan. This connection allows us to leverage existing knowledge of the finite
element method regarding triangle shapes to find an optimized placement of
the virtual vertex. Based on these insights, we presented a smoothing algo-
rithm that can further improve polygon meshes with regard to the trace of the
polygon stiffness matrix. The combination of techniques offers a valuable tool
set for improving the overall performance of numerical simulations on complex
surface geometries.

The experiments showed mostly consistent improvement in both accuracy and
condition numbers for the virtual refinement method, with only some excep-
tions (see table 6.1). Compared to other existing operators, our methods offers
an approach that consistently yields good results, whereas the other methods
require tuning the available parameter to adapt to the task at hand.
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SUMMARY

As commonly acknowledged, the classical cotangent discretization of the Lapla-
cian is widely used and a prominent method to handle various algorithms in-
volved in geometry processing. However, the recognized needs of artists and
scientists for modeling complex shapes and tessellations demonstrate that this
is simply not enough. More flexible approaches are required that extend the
discrete Laplacian operator beyond triangle and tetrahedral meshes to meet the
evolving demands of geometric modeling and engineering applications. Fur-
thermore, while facing the mathematical difficulties these extensions entail, we
still have to find practical solutions accessible to a broader audience.

This thesis addressed these challenges by introducing the linear virtual refine-
ment method (Chapter 3). It offers a straightforward yet effective discretiza-
tion of the Laplace operator for polygonal and polyhedral meshes. The fun-
damental building block of this method, the virtual refinement based on the
Galerkin method, proved to be highly adaptable and allowed the definition
of even higher-quality polygon Laplacians across various numerical schemes.
For example, the Diamond Laplacian (Chapter 4) based on the DDFV method
trades a denser sparsity pattern for more accurate results, even on standard
triangle and tetrahedral meshes.

In Chapter 5, we demonstrated that the linear virtual refinement method can
be extended to higher-order discretizations. We defined variational quadratic
shape functions for arbitrary polygons and polyhedra while retaining benefi-
cial properties such as faster convergence, higher accuracy, and quadratic pre-
cision. Using these shape functions was made affordable through our custom
multigrid approach, successfully mitigating the expensive solving times of the
volumetric case.

Furthermore, Chapter 6 demonstrates that the full potential of the linear virtual
refinement method, and consequently other discretizations, can be even further
explored. We enhanced the original method by focusing on the degrees of free-
dom involved and were even able to find a correlation between the shape of the
polygons and our Laplacian’s performance.

In short, we do not have to limit ourselves to shapes like triangles and tetra-
hedra. If we further explore arbitrary polygons and the mathematics behind
them, we can establish the flexibility and freedom to use whatever shapes a
user might desire. We hope this thesis made a meaningful step toward that
goal.
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7.1 RECOMMENDATIONS

Considering the exhaustive evaluation on different polygon Lapalcians pre-
sented in this thesis, we want to summarize the obtained results and give the
reader a recommendation in which situation which operator should be used.
In the linear setting, given their overall performance, the DEC Laplacians pre-
sented by Alexa and Wardetzky [AW11] and de Goes et al. [GBD20] lead to
favorable numerical results if the user is willing to adjust the stabilization pa-
rameter for each individual application.

The presented Diamond Laplacian will be the better choice if the reader is look-
ing for a method that works both on surface and volume meshes and leads to
accurate results without any adjusting. However, given its denser matrix pat-
tern, this approach leads to longer solving times.

If this is a problem, the operator obtained with the linear virtual refinement
method would be a computationally more efficient choice. It works on both
surface and volume meshes and, given that many applications already work
with the cotangent Laplacian, can be easily integrated since the only missing
piece is the prolongation matrix. Initially, it provides slightly less accurate re-
sults than the Diamond Laplacian. However, using the optimized weights and
placement of the virtual vertex proposed in Chapter 6 further enhances its accu-
racy and numerical stability. These enhancements lead to an operator that can
often surpass all of the other methods. However, currently, these optimized
parameters are only provided for surface meshes.

Should the reader’s primary goals revolve around achieving high accuracy and
faster convergence, with less regard for the computational complexities and po-
tential numerical stability of the underlying system to be solved, then forsaking
the linear setting entirely in favor of employing higher-order shape functions
as defined in Chapter 5 would be the best choice.

The harmonic shape functions are not competitive compared to the other meth-
ods due to their costly construction process. However, they are able to repro-
duce P1 and Q1 elements on triangles and quads, are CY continuous to P1/Q1
at the boundaries of polygons and polyhedra, and can therefore be seamlessly
mixed with these standard elements.
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7.2 OUTLOOK

Lastly, we would like to conclude this thesis with some promising directions for
future work. A possible avenue would be to consider even higher-order exten-
sions of the linear and quadratic virtual refinement method, with higher deriva-
tive continuity constraints across elements — enabling thin shell simulations on
polygonal meshes. We would also like to extend our approach to constructing
1-form bases, supporting the large body of work on vector field processing. Fur-
thermore, besides the Laplacian, there exist a variety of other discrete differen-
tial operators whose extensions could be helpful in the graphics community, as
touched upon by de Goes et al. [GBD20], and Lipnikov et al. [LMS14] in their
survey on the MFD method. Based on Chapter 6, further research could in-
volve extending the numerical analysis of the linear virtual refinement method
to volume meshes and examining whether similar connections can be estab-
lished. Additionally, expanding our analysis to other Laplacians, such as the
Diamond Laplacian or the Discrete Exterior Calculus methods [ AW11; GBD20],
could be promising. Regarding the linear virtual refinement method itself, it is
currently still limited to polygons that can be reasonably refined by introducing
a single virtual vertex. The possibility of introducing multiple virtual vertices
within a single face could lead to improved triangulations of non-convex poly-
gons, which would further enhance the quality and flexibility of our method.
In conclusion, while this thesis addressed many aspects of polygon and poly-
hedral Laplacians, some unopened doors for research opportunities remain.
Exploring them could further improve our community’s range of tools and pos-
sibilities to work on arbitrary tesselations, giving polygons the attention they
deserve.
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HexAnisotropic Concave Voronoi

Hexagonal
Figure A.1: Some of the more abstract mesh types used in our evaluation. Shown here

are resolutions 2 and 3 of the five levels used.
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.2 FINDING THE OPTIMAL VIRTUAL POINT

Given a polygon with n vertices (x, ..., X, f), we want to insert a point x =
x(w), defined as an affine combination x(w) = Z;Z Lwix; with Y w; = 1,
such that the sum of squared triangle areas over the resulting triangle fan is
minimized. This leads to the following optimization problem in the weights
w = (wl,...,wnf)T:

Vlf n 2 Tlf
min Z area (x,-, Xit1, Z wjx]-> s.t. Z w; =1. (A.1)
j=1

i=1 j=1
The objective function can be rewritten as

nf
1 2
E(w) = )5 10 = xig1) x (x(w) =) || (A-2)
i=1
Since E is quadratic in x(w) and therefore also quadratic in w, it can be written
as

1
E(w) = EWTAW +b'w+ec. (A.3)

Minimizing with respect to w, i.e., setting gTb; to zero, leads to

Aw = —b with
ny

Aij=2) (%% (s1 = X)) - (6 X (1 — 1)), (A4)
k=1 .

ny
bi =2 (xi X (Xps1 — X)) - (X1 — Xe) X Xg)
=1

We add one row to the matrix to enforce the partition of unity constraint } ; w; =
1, turning it into the (17 + 1) X ny linear system

(1 2 1) w= (]b) - (A5)

The matrix A has rank 2 or 3 for planar or non-planar polygons, respectively.
Hence, the system in Equation (A.5) has rank 3 or 4 for planar/non-planar
polygons. It is therefore fully determined for either (planar) triangles or non-
planar quads, and is underdetermined otherwise. In the latter case, we aim
for the least-norm solution, i.e., the solution w with minimal ||w||, because it
distributes the influence of polygon vertices x; equally. We handle both the
fully-determined and the under-determined cases in a robust and unified man-
ner through the matrix pseudo-inverse [GVL96], which we compute through
Eigen’s complete orthogonal decomposition [GJ+10].
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This appendix lists proofs for some of the properties we observed empirically
in Chapter 5 and leveraged to develop a more efficient implementation. These
proofs were all authored by Misha Kazhdan, and the author of this thesis takes
no credit for this section. However, it is necessary for a better understanding
of Chapter 5 and therefore included in this thesis. In particular, we will show
that when an arbitrarily small Dirichlet energy is incorporated into the gradi-
ent continuity energy, the derived basis functions are uniquely defined, the
partition of unity property is satisfied automatically (and does not to be en-
forced explicitly), and the linear precision property is satisfied automatically
for faces that are planar. We start with the proof that our shape functions re-
produce the quadratic Lagrange elements on triangle and tetrahedral meshes.
In the second part of this appendix, we address the properties that can only be
proven by adding the Dirchilet constraint to our energy. We start by formal-
izing terminology and notation (Section B.2), to then prove that the function
basis is unique, that the partition of unity property is satisfied automatically,
and that the linear precision property automatically holds for planar cells for
both the single-level system (Section B.3) and for the hierarchical construction
(Section B.4). We conclude with a short discussion about the generalizability
of the approach (Section B.5).

b.1 LAGRANGE ELEMENT REPRODUCTION

Given a simplex ¢ in 2D or 3D, let {¢ } be the standard quadratic Lagrange el-
ements, let {¢;} be Lagrange elements on the virtually refined simplex, and let
{¢;} be the linear combinations of {;} that satisfy the Lagrange interpolation
property and minimize the gradient discontinuity energy.

Claim 1. The two sets of functions are identical {¢;} = {¢;}.
To prove the claim we formulate several lemmas.

Lemma B.1.1. Given polynomials Py and P, of degree d in RP whose values and
partial derivatives up to order d — 1 agree on the hyperplane x; = 0, there exists
« € R such that:

Py(x1,...,xp) = Pa(x1,...,xD) —i—tx-xf.

Proof. Expanding the polynomials as:
Pi(xl,...,xD) = Z a;l---jD .x]11 ...xg’
it tjp<d
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we note that the coefficients a;'.l”_ j, Must agree whenever j; < d. To see this,
take the ji-th partial derivative with respect to x; and consider the resulting
polynomials Q; in D — 1 variables:
ol
Qi(xz,...,xD) = - Pi(O,xz,...,xD)
Ix?
1
i j2 jp

= Y (1) -4y, j, % - xp.

]'2+...+].D§d*]'1

Since we take j; < d derivatives, the polynomials Q; and Q> are equal, implying
that their coefficients ”;1... i, are the same. Thus, the polynomials P; and P, can
only differ in their x‘l’l term. ]

Corollary B.1.1.1. Although we required the values and derivatives (up to order d —
1) of Py and P, to agree on the hyperplane x1 = 0, Lemma 1 holds if they agree on any
open (non-empty) subset of the hyperplane. (This follows from the fact that polynomi-
als are analytic.)

Corollary B.1.1.2. We can replace the condition that the polynomials Py and P, agree
on the hyperplane x; = 0 with the condition that Py and P, agree on a hyperplane
defined by the linear system (x,v) = 0 forany v € RP. In this case there exists x € R
such that:

Pi(x) = Po(x) + a - (x,v)%

Lemma B.1.2. Given a vector v, denote by Ay : RP — R the linear function Ay (x) =
(v,x). Given D + 1 vectors {vy,...,vp} in RP, no D of which are linearly dependent,
the set of functions:

{A%,00 = (vi,x)}

are linearly independent for all d > 1.

Proof. The statement is invariant under linear transformation so we can assume,
without loss of generality, that {vy,...,vp} are the coordinate axes. By linear
independence, we have: vo = (vy,...,vp) where all of the v; are non-zero. In
this coordinate system we have:

Av,(x1,...,xp) = xl‘-i, V1<i<D

D d
Avo(xl,...,xD) = (va) .
i=1

The Ay, (w/ 1 < i < D) are linearly independent as they are functions of differ-
ent variables. In addition Ay, cannot be expressed as the linear combination of
the Ay, (w/ 1 <i < D) since Ay, contains mixed terms while the monomials
Ay, (w/1<i<D)donot. O
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We can now prove the claim. We proceed in two steps. First we show that
the Lagrange basis function, {¢;}, are in the span of {i;} and that they have
zero energy. Then we show that these are the only functions that have zero
energy and satisfy the Lagrange interpolation property, implying that they are
the unique minimizers. Proving the first statement is straight-forward. Proving
the second amounts to associating functions with edges in the adjacency graph
of the simplicial refinement and showing that the functions associated with
cycles in the graph are linearly independent.

Proof. To prove that the {¢}} are a solution, it suffices to show that each ¢; is
in the span of {¢;} and that the energy of each 4)7 is zero. To prove that 4);-‘ is
in the span of {¢;}, let {px} C o be the Lagrange nodes in the refined complex
Y. Setting

¢j(x) = ;@(m) - Pr(x)

we get a piecewise quadratic polynomial that agrees with the Lagrange basis
functions (,b]’." at all refined nodes. By the Lagrange interpolation property, this
implies that ¢; and gb]’f agree on each ¢ € X,. Thus ¢; and cp;‘ agree on all of
0. Additionally, since the {¢;} are strictly quadratic, they have no derivative
discontinuity and the discontinuity energy is trivially zero.

To prove that {¢}} is the unique minimizer we show that if the {¢;} have zero
energy then they must be strictly quadratic in . Then the proof follows from
the fact that Lagrange basis functions are the only quadratic functions satisfy-
ing the interpolation property.

Since the claim is invariant to affine transformation, we assume that the simplex
o is translated so that the virtual vertex introduced in the interior of ¢ is at the
origin, and consider two cases.

V3

2D We start with the case of a triangle
o = {vy,vy,v3}. After virtual refine- Oy
ment, ¢ is partitioned into three sub- 031 Vo
triangles, X, = {012, 023,031 }, with in- 4 /
dices chosen so that vertex v; is oppo- 12
site triangle o for i # j, k.

Vi

Now, given a piecewise quadratic polynomial P (strictly quadratic within each
0ij) whose gradient is continuous across ¢, we denote the restriction of P to 0;;
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as P;j. By Corollary B.1.1.2 we have:
Pia(x) = Pas(x) + a2+ A, (%)
= P31(x) + a3 - A‘ZIJ_(X) +ap - A‘ZIJ_(X)
3 2
= Pp(x) + g - A‘zlL(x) + as - AiL(x) +ay - Ail(x)
1 3 2
for real values a1, ap, a3 € R. Or, equivalently:
0=a1 A2 (x) +ap- A2, (x) +az- A2 (x).
1 2 3

Since no two of the {vy,vy,v3} are collinear, by Lemma B.1.2 the functions
{A, .} are linearly independent so that &y = a«p = a3 = 0 and hence P is
strictly quadratic in ¢.

Va4

Va2

Figure B.1: Visualization of the domains considered in the two steps of the volumetric
proof.

3D Next, we consider the case of a tetrahedron o = {vy,vy,v3, v4} and as-
sume we have a piecewise quadratic polynomial P (strictly quadratic within
each 0’ € ¥,) whose gradient is continuous across ¢. We proceed in two steps.
First we show that P must be strictly quadratic within the tetrahedra defined
by joining the faces of ¢ with the origin (i.e. the virtual vertex defined in the
interior of 0). Then we show that P is strictly quadratic in ¢.

Denote by cjx = {0,v;,v;,vi} the tetrahedron defined by joining the face
{v, vj, vi } with the origin. Note that Tijk is not in the refined complex %, but
we can express 0 as the union of three simplices in X,. Specifically, if we
denote by v;j; the virtual vertex in the interior of the face {vi, vj, vy} and set afj
to be the simplex (lej = {0, Vijk, Vis V]'} which is in the refined complex, then we
have: '

Uijk = 0'1-];- U U;k U Ul]ci'

Again, noting that P is strictly quadratic within each each (71-’;-, we denote by Pi’;.
the restriction of P to (7{;. Proceeding as before, cycling around edge {0, v;j},
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we have:
kiy) — pk jk A2 ij A2 k. A2
Pij(x) = Pi]-(x) +a; -AV]:k(x) + ock] -Avg(x) + ac} 'Av;lk(x)'
where v;'.k = v; X v;j is the vector perpendicular to the face separating simplices
f ,
ox

i and ‘T}k' Or, equivalently:

0= “{:k : A‘zljk (X) + OC;'k : A%,;k (X) + D‘;‘cj ' Ai;} (X)

As before, using the linear independence of v{k, vi, and v;{j, and applying

i
Lemma B.1.2, it follows that txgk = tx;.‘i = a;{] = 0 so that P is strictly quadratic
in ojjg.

Finally, we show that P is strictly quadratic in ¢. For simplicity, we will denote
by o; the simplex opposite vertex v;:

0 = {01 Vit1,Viy2, Vi+3}

and we will denote by P; the restriction of P to ¢; (which we have shown is
strictly quadratic). Without loss of generality, fixing vertex v4, we consider
simplices 071, 07, and 03. These meet at edge {0, v4} and, again, cycling through
the simplices around the edge we get:

Pl(x) = Pl(x) + ‘Xg ’ AV4><V2(X) + ‘X% ’ AV4><V1(X) + 0‘% ’ AV4><V3(X)-

Noting that v4 X v, v4 X vp, and v4 X v3 are linearly independent, it follows that
af = a5 = a3 = 0 and hence P is strictly quadratic on ¢y U 0 U 03. Repeating
this argument for the vy, vy, and v, it follows that P is strictly quadratic on
o Uoz Uoy, on oz Uoy U oy, and on 0y Uy Uoa. Thus P is strictly quadratic on

all of . O

b.2 TERMINOLOGY AND NOTATION

In what follows, we assume that all complexes are pure. That is, if the complex
is D-dimensional, then every d-dimensional simplex/cell (with d < D) is on
the boundary of some (d + 1)-dimensional simplex/cell

We begin by presenting the terminology and notation used in the proofs. A
brief description can be found in Table B.1.

Simplicial Complexes

e We denote by ¥ a D-dimensional simplicial complex.
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Symbol Definition
2 a D-dimensional simplicial complex
Xy the subset of d-dimensional simplices in &

N(Z) | the set of Lagrange nodes of %
B(X) | the set of Lagrange basis functions on X
C a D-dimensional cell complex
ct the d-dimensional sub-complex of C
Z(C) | the simplicial complex obtained by refining C
N? | the set of Lagrange nodes on X (C*)
B? the set of Lagrange basis functions on X.(C*)
B the subset of B indexed by interior nodes
Qs | the quadratic energy on Span(B“)
(-,-)4 | the symmetric bilinear form defined by Q,
| 1|3 | the squared norm Q,
B? | the function basis on X (C?) indexed by N (d’ < d)
P the function in B% indexed by node 7 € N

Table B.1: Summary of notation

e We denote by X (for 0 < d < D) the set of d-dimensional simplices in X.

e Given a D-dimensional simplicial complex X, we denote by N/ (X) the set
of quadratic Lagrange nodes of X.

e Given a D-dimensional simplicial complex X, we denote by B(X)
the set of quadratic Lagrange basis functions on X.  Specifically
B(X) = {ﬁ, i yen(z) where each wg, ; is strictly quadratic within each

simplex ¢ € X and satisfies the interpolation condition, gbf;’ a(n') = Sy
forally’ € N(X).

Linear Precision

e Given a domain embedded in Euclidean space, (2 C IR", we say that a set
of functions {¢;} : 3 — R, has linear precision if for every linear function
L:R" — R, there exist coefficients {x;} C R with:

L‘Q = in'q)i-
1

Cell Complexes and Their Refinement

e We denote by C a D-dimensional cell complex.
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e We denote by ct (for 0 < d < D) the d-dimensional sub-complex ob-
tained by only considering cells in C with dimension less than or equal to
d. In particular, C° C --- c CP = C.

e Assuming that there is a virtual vertex associated with each d-dimensional
cellinC (foralld > 1), we denote by X (C) the simplicial complex obtained
by refining C.

e Weset V' = N (Z(C?)) to be the set of quadratic Lagrange nodes defined
on the simplicial refinement of C?. Because the complex C is pure, we have

NOC ... C NP
o We set B = B(Z(CY)) = {1p dtpen to be the set of Lagrange basis
functions defined over the 51mp11c1al refinement of the sub-complex C*.

e We set B4 C B to be the subset of Lagrange basis functions on X (C%)
indexed by nodes interior to the d-dimensional cells in C%:

B = {4 1} yen w1
The Quadratic Energy

e Given a cell complex C, given a dimension 1 < d < D, and given ¢ > 0,
we define a quadratic energy Q,(-) on the space of functions on X.(C%):

Qu <¢d) = )3

ceLy 1 (CI\Zy_1(CI-1) 70

+ ), e
O’EZd(Cd) v

= V|| do

2
4" do

The first integral measures the C'-continuity of ¢, and is taken over all
(d — 1)-dimensional simplices in the refinement of C? that are not in the
refinement of C*~!. The second integral is a Dirichlet regularizer and is
taken over all d-dimensional simplices in the refinement of C%.

e We denote by (-, -); the symmetric, positive, semi-definite form defined
by Q4 and write the energy as || - ||3 = Qq4(-).

Given the quadratic energy, we denote by B% | C Span(B?) the “coarse” basis

on X(CY). This is the set of functions B _; = {’Ps,d—l}' defined on X (C%) but

indexed by nodes 17 € AN*~1, where each lpgl 41 Minimizes the energy, subject
to the interpolation constraint:

!,

1[],7 i-1= arg min
ypleSpan(B9)

st gl () =8y, Wy e NN
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b.3 PROPERTIES OF THE BASIS Bg_l

In what follows, we demonstrate that the functions in Bg_l are unique, satisfy
the partition of unity property, and (under appropriate conditions) have linear
precision.

In doing so, we make use of the following lemmas.

Lemma B.3.1. The basis 3% spans the subspace of functions in Span(B?) that vanish
on %.(C41).

Proof. Suppose we are given a function ¥? € Span(B%):

d _ d
Y=Y ay g
neNT

If ¢ vanishes on X.(C?~1) then, in particular, it must vanish at every node ' €
N1 But because the B satisfy the Lagrange interpolation property, we have
¥i(n') = a,r. In particular, this implies that if ¢ vanishes on Z(C%~1) then
p? e B

Conversely, as N¥~1 C N9, given tpg’ ; with 7 € N\N?~1 we must have
1/]7‘;, ,(7") = 0forall ' € N1 since gb;;’ ; satisfies the interpolation property.
On the other hand, since z,bg’ ; is strictly quadratic, its restriction to X (C =1y will
also be strictly quadratic, so that the fact that it vanishes at all quadratic La-
grange nodes A~ 1 implies that it must be constantly zero on %.(C4~1). O

Lemma B.3.2. Though the symmetric bilinear form (-,-)4 is only semi-definite on
Span(B%) it is strictly definite on Span(BY).

Proof. Suppose that we have ¢ € Span(B?) such that [|?||2 = 0. Since ¢ €
Span(B7) it must be continuous. Let ¢ € C%\C%~! be a d-dimensional cell in C.
Since ||?||2 = 0, it must be constant on c. And since * € Span(B) it vanishes
on the boundary X (c) C (C%1). Thus it must be the case that ¥ =0. [

Lemma B.3.3. The spaces Span(B2_,) and Span(BB?) are orthogonal with respect to

(s )a

Proof. It suffices to show that <1P;?,d—1/ )y = 0forally € N4 !and all * €
Span(59).

Suppose to the contrary that there exists 7 € N1 and $? € Span(/39) with
<1/)$/ 4 1 ¥")a # 0. Consider the function

d,u _od 2 d
g =l e
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On the one hand we have 4];7«1 (') = 1p77d () = 8,y for all n e N1 On

the other, the energy of 1/717 ;1 can be expressed as:

d 24|12
o], = [¥a -+ 9],
2 2
d d o 2|.0d
=[]+ 20 (o 9), + 2]

P(a)

Ata = 0, the polynomial P(«) vanishes but its derivative does not. Thus, there
exists a small value a* (less than zero if P’(0) > 0 and greater than zero if
P'(0) < 0) such that P(a*) is negative. Setting @Z,d_l = 1p,‘j/d_1 +a* - 7 we get
a function with ng,dfl (') = 8,y forally’ € N1, such that:

~d 2 d 2
[, < [whan ],

contradicting the fact that 1}71‘;1 ;1 is the interpolation-constrained minimizer of
the energy. O

Claim 2 (Well-Defined). For a given € N'~1, the function lpzl 1 that satisfies
the interpolation conditions l[)g/ g1(1") = Sy forall ' € N1 and minimizes the
energy || - ||3 is unique.

Proof. Suppose that there are two functions wd 41 and 1[3‘1 41 that satisfy the
interpolation condition and minimize the energy, with Hl/);7 d—1 Hd I l/JU d—1 Hd
We would like to invoke Lemma B.3.3 using ¢ = 1/)17’ g1 1/),7/ j_1- As both
functions satisfy IIJZ, i) = 1,[;17 i) = 6y forall 4" € N 4=1  their dif-

ference is equal to zero at all nodes in NV4~! and so by Lemma B.3.1 we have
¥ € Span(B39). Thus, if it were the case that <¢$/ o1 ¥4 # 0, we would have

a contradiction to the optimality of 1/)1‘;1/ i1
Suppose that 0 = (ﬁ,d_l,tpd)d = <l[)$’d_1, lng,d_l — 1P$,d—1>d' Then we have:

2
d _ d 7d
Hlpr],d—l Hd - <1vb77,d—1’ ll]q,d—1>d :
But under the assumption that tpzl 41 and 1,51‘;1 41 are both minimizers, we also
d 2 |44 2 .
have H‘/J;y,d—lHd = ||l/J’7/d71||d so that:

2 2
d||* _ |d 7d
]}, = -1 — #aal

2 2
_ d 7d d 7d
= [l [0l =2 (s ),
=0.
Thus, by Lemma B.3.2, ¢ = 0. Or, equivalently, that lpg i1 = tﬁg i1 O
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Claim 3 (Partition of Unity). The functions B3_| satisfy the partition of unity prop-
erty on X.(C). In particular, setting:

i _ d
Yiaa= ), Yhaa

neNd-1
we have ¢, . =1
1d-1—

Proof. Recall that the Lagrange basis 3 satisfies the partition of unity property,
so that setting

d — d
Yia= Y Y
neNd
we have lpf’d =1
We would like to apply Lemma B.3.3 with ¥ = 1pf, g1 1p§ ;- As above, LS
Span(B) so that if <¢Z,d—1'l/]d>d # 0 for some 7 € N1 we would have a
contradiction to the optimality of IIJZ, FIRT
Suppose, to the contrary, that (ll)gl i1 )4 = 0forally € N9~1. Summing, we
get:
2
— d a\ _ d a\ _ d
0= Y (vhavw') = (¥lavv’) = v

peN-1

where the last equality follows from the fact that the ||¢¢ ,||3 = 0. Then using
Lemma B.3.2 it follows that ¢ = 0 or, equivalently, that IP?, i1= gbf, ;=1 O

Claim 4 (Linear Precision). If the cell complex C (together with the virtual vertices)
is embedded in Euclidean space, £o(C) C R" and if for each d-dimensional cell ¢ €
C\C4~1 the vertices Lo(c) all lie within a d-dimensional plane, then the basis Bg_l
has linear precision.

Proof. We start by observing that, since the functions in Bgfl satisfy the inter-
polation condition 1/)7‘;1/ g_1(1") = 8y forall m, i’ € N1, the basis has linear
precision if and only if for all linear functions L : R"” — IR, we have:

Llgsy = ¥14-1 = % 1 L(n) - $),0-1-
neN

Because the functions in the Lagrange basis 3% have linear precision, we have:

Llyen =¥a= Y, L) -j 4
(c4) Jen

We would like to invoke Lemma B.3.3 using ¥ = 1/)%/ i1 = 1/)%/ ;- As above,
¥ € Span(B?) so that if <¢$,d_1/¢d>d # 0 for some 17 € N~! we would have
a contradiction to the optimality of 1/)1‘3 J_1-
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Again, supposing to the contrary that (1/)7‘;/ i1 )y = 0forally € N91, we
take the weighted sum:

0= UE%_l L(n) - <¢$,d—1r¢’d>

= ) L(n)- <¢$,d_1/¢?,d_1 - ¢%,d>

neNd-1

_/d d d
= <1PL,d—1rlPL,d—1 - lPL,d>d-

d

d

Or, equivalently:
2
d d d
HIPL,qud = <¢L,d71/¢L,d>d'
Using the Cauchy-Schwarz inequality it follows that:

2 2
d d
HIPL,d—1Hd < ||¥Lag p

On the other hand, since each d-dimensional cell ¢ € C%\C?~! lies within a
d-dimensional plane, we know that the restriction of the function L to c has
continuous gradient. Thus, we have:

Hlpi/dHi B U’GZ%Cd)s. VchLl,de 4.

ag

Furthermore, since gbf ; is linear, it is harmonic within each cell ¢ € ct \C d-1

Thus, of all continuous functions that agree with L on %(C%~1), the function
lpf ; is the one minimizing the Dirichlet energy. In particular, since v,bf 41 and
7 ; agree with L on £(C%~1), we have:

2

d _
”LPWHd_ L, e
UGZd(Cd)

< ) e
UEZd(Cd)

Vl/’f,dHZ

(o4

d 2 d 2
Vot < [t

(o4

Combining the two inequalities, we get:

2 2
d d d d
HIPL,d—1Hd = H’PL,de = <¢’L,d—1r1/’L,d>d-
As above, this implies that:
2
Hlpi,d—l - ll)f,de =0
and using Lemma B.3.2 it follows that gbf,d_l = gbf’d = L}Z(cd)' O
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b.4 GENERAL PROLONGATION

The basis Bgfl consists of functions indexed by nodes 7 € A/¥~! that are de-
fined on X.(C?). We now describe an approach for generalizing this formulation,
defining a basis Bg, forall 0 < d' < d < D, where the basis functions are in-
dexed by nodes i € ¥ and defined on % (C%). As above, we show that these
bases can be expressed as the solution to a constrained minimization problem,
satisfy the partition of unity property, and (under appropriate conditions) sat-
isfy the partition of unity property.

Definition. Given the basis Bgfl, we define the prolongation matrix ngl €
RW/XIN*! t6 be the matrix whose coefficients give the expression of lpg, g1

as a linear combination of the gbg B

d _ d d
lpﬂ/,d—l - Z <Pd71> , lp;y,d'
neNd "

Definition. For 0 < d’ < d < D, we define the prolongation matrix PZ, to be
the composition:

/
Pd/ — Pg—l Ce Pg,—Fl'

Definition. For 0 < d’ < d < D we define Bg/ = {1/]1‘;, d/};y/ ¢ to be the subset
of Span(B%) such that:

d } : d d
wﬁ’,d/ = <Pd’> , ll]f],d'
neNd 77’7

We note that for all &’ with 0 < d’ < d we have B% C Span(B%_,). This
motivates the following claim.

Claim 5 (Optimality). Given 0 < d’ < d < D and given i/ € N, iftﬁg,,d, €
Span(B?) is a function that agrees with tpfl,’ o on Z(CPY) then we have:

2
d ’

2 d
e HlP,,/,d/

d
Htp”/,d/

with equality if and only if 1p;j,, gy = 1[71‘;,/ g+ Thus, of all functions in Span(B?) that
agree with gbf;,, g onx (C9=1) the function 1/]1‘71,, v 18 the unique minimizer of the energy

2
- 113

Proof. Consider the difference ¢ = l/;;j,, g~ 1/)1”71,, g As 1/35,, s and ll)g,,  agree on
> (C%1) we have ¥ € Span(B?).
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B.4 GENERAL PROLONGATION

Expanding the energy of 1/73,’ o We get:

2 2
d d d
wq’,d’ )d — wﬂ’,d’ + lp Hd
2 2
d d d d
= [yt , d—i—Hl[J Hd+2<¢’7/'d/’l/] >d
2 2
d d
= ||y ’d+ Hlp Hd

where the last equality follows from Lemma B.3.3 — using the fact that wg, g €
Span(B?_,) and ¢ € Span(B). Thus the energy of lpg/ y is no greater than the
energy of lﬁg,, y» with equality if and only if the energy of ¥ is zero. But since

¥ € Span (%), Lemma B.3.2 implies that the energy of ¢* vanishes if and only
if 1/)d = 0 or, equivalently, if and only if 1/)7‘;1,, g = 1/31‘;’,’ 7 O

Claim 6 (Partition of Unity). If the basis Bfl,_l satisfies the partition of unity prop-
erty, then so does the basis Bg,.

Proof. Consider the functions:

i _ d d d _ d
Yo=Y, Yya€B and  P1,= ) Y4

neNd neNd

We have gbf g € Span(Bg_l) and, by the assumption of the claim, the functions
l[J’li g and l[Ji ; are both constantly equal to one on X (C 4=1). By Claim 5 we have:

2 LR .
< [lu], =0
.S P14 p

d
H Y14

Thus, we must have ||y¢ 5= |94 ,||? so, by the claim, the two functions are
equal — zp‘f/d, = %{d =1 O

Corollary B.4.0.1. Using the fact that BZ:H satisfies the partition of unity property,
it follows that Bg, satisfies the partition of unity property.

Claim 7 (Linear Precision). If the basis BZ,_ U satisfies the linear precision property
and every d-dimensional cell c € C?\C9~ has the property that the vertices of its
simplicial refinement Zo(c) lie in a d-dimensional plane, then the basis BY% also has
linear precision.

Proof. Let L : R" — R be a linear function and consider the functions ¢ ,, and
d .
YLa
17— d d
IIJL,d' = Z L(T]/) . lpql’dl € Bd’
17'6./\/’1/

lpi,d = Z/\/’dL(”) 'lpg,d = L}Z(Cd)'
ne
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By the assumption of the claim we know that lpf’ y agrees with Lpi, ; on the sim-
plicial complex £ (C%~1). Thus, by Claim 5 we know that:

2 g |
i~ HIPL'de'

d
‘ ‘ YL e

On the other hand, we know that of all functions agreeing with L on X(C%~1),

the function ¢ , minimizes || - ||3 since it is C! and harmonic. Thus the two
; d 2 _ d |12 ;

functions must have the same energy, [|¢7 , (|7 = [|¢7 4[| so, by the claim, the

functions are equal — lpi, = gbfl i= L‘):( cdy: O

Corollary B.4.0.2. Given 1 < d < D, if for every 1 < d' < d, every d'-th dimen-
sional cell ¢ € C¥\C¥ 1 has the property that the vertices of the simplicial refinement
Y(c) lie in a d'-dimensional plane, then the basis Bg, has linear precision.

b.5 DISCUSSION
The Need for gradient continuity

In these derivations we only used the Dirichlet regularizer in the definition of
the energies Q,(-) and could have foregone the gradient-continuity term, as all
the functions we ended up considering had continuous gradients in any case.
The reason we incorporate the gradient continuity energy is to prove that the
basis B4_| reproduces the Lagrange basis in the case that C is a simplicial com-
plex. That is, that our work generalizes the standard Lagrange basis. In that
case the reproduction proof holds when the energy is defined entirely in terms
of gradient continuity (i.e. when ¢ = 0). Thus, in practice our works assumes
that ¢ is an arbitrarily small, but non-zero, value. It needs to be non-zero for
the proofs described here to hold. It needs to be arbitrary small so that we
come arbitrarily close to reproducing the Lagrange basis in the case that the
cell complex is a simplicial complex. (One could make the reproduction exact
by identifying the kernel of the gradient continuity energy and only adding
the Dirichlet energy of the projection onto the kernel. However, this would re-
quire identifying the kernel for each cell, making the implementation slower in
practice.)

The Order of the Shape Functions

Though our research focuses specifically on quadratic Lagrange elements, the
proofs above only assume that the order is at least one, so that we are working
within a continuous function space.
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B.5 DISCUSSION

The Choice of Metric

The definition of Q; requires the choice of a metric in order to define gradients
and compute integrals. In general, our implementation only requires an assign-
ment of a symmetric positive definite matrix with each D-dimensional simplex
of the refinement, o € Xp(C).

However, in the case that the cell complex C is embedded in R" and we re-
quire linear precision, we assume that the metric is induced by the embedding.
This ensures that the restriction of linear functions to the cell complex will have
continuous gradients.

We note that the piecewise-constant assignment of metric tensors to simplices
does not ensure that the induced metric on boundary simplices is consistently
defined for face-adjacent simplices. This is the case when the metric is induced
by the embedding of cell complex in IR” but need not be true in general. In our
application of anisotropic diffusion (for line integral convolution) this is not
an issue, but it could be in other contexts.! One can bypass this problem by
defining the metric by assigning lengths to all edges of the simplicial complex.
This ensures metrics are consistently defined on boundary faces, but has the
limitation that the assignment of positive edge weights must satisty the triangle
inequality — a nonlinear constraint on the set of edge weights.

Planarity Testing

As discussed above, if the cell complex is embedded in Euclidean space,
Y0(C) € RY, and we would like to have linear precision, we only need to
explicitly impose linear precision constraints for those d-dimensional cells
c € C whose vertices do not lie within a d-dimensional plane. This can be
checked by constructing the characteristic polynomial of the covariance matrix
of the vertices of ¢ and checking that the lowest N — d coefficients are zero.
That is that is, that the characteristic polynomial P(x) is divisible by xN—4.

1 Our approach supports this metric discontinuity, with the implication being that gradient dis-
continuity can be manifest along the virtual face, not just across it.
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APPENDIX

1 QUADRATIC PRECISION OF THE BASIS Bf_,

This section is an addition to the proofs listed in Appendix B. We follow the
line of argumentation that was used to prove the linear precision property of
our basis functions (see Chapter 5) to show that we also retain the desired
quadratic precision. Given a domain embedded in Euclidean space, (O C R”,
we say that a set of functions {¢;} : QO — R, has quadratic precision if for every
quadratic function Q : R” — R, there exist coefficients {4;} C R with:

Qlg :Zﬂz"(Pi-

In what follows, we once again assume that all complexes are pure. In other
words, if the complex is D-dimensional, then every d-dimensional simplex/cell
(with d < D) is on the boundary of some (d + 1)-dimensional simplex/cell.

Claim 8 (Quadratic Precision). If the cell complex C (together with the virtual ver-
tices) is embedded in Euclidean space, Xo(C) C R" and if for each d-dimensional cell
c € CN\CY! the vertices To(c) all lie within a d-dimensional plane, then the basis
Bg_l has quadratic precision.

Proof. The first part of the proof is almost analogous to the one provided for
the linear precision property. Since the functions in B%_, satisfy the interpo-
lation condition 1/)1‘3, 41(1") = 8,y for ally, 5’ € N1, the basis has quadratic
precision if and only if for all quadratic functions Q : R" — IR, we have:

Y. Q) -ub,‘?,dfl-

peN-1

Q|z(cd) - lpé,d—l

The functions in the Lagrange basis B have quadratic precision, and therefore
satisfy:

Q’Z(Cd) = ¢dQ,d = Z Q(U) ’ ¢$,d’
neNd

We apply Lemma B.3.3 to the difference between the two interpolated quadratic
functions ¢ = 1/)dQ/ g1 1/)dQ/ ;- As before, sirtce both interpolations agree on
the boundary vertices, we have ¥ € Span(B?) so that <¢Z,d—1/¢d>d = 0 for
all 7 € N9~1. If that were not the case, meaning <¢$, Py )y # 0 for some
n € N1, we would have a contradiction to the optimality of lpg FIRE
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Therefore, supposing that <l[)$, s ¥)a = Oforally € N1, we take the
weighted sum:

0= Y Q- <¢$,d—1'¢d>

peENd-1 d
= % 1 Q) - <¢$,d—1/lpé,d—1 - ¢dQ,d>d
neEN-

d d d
= <¢Q,d—1flPQ,d—1 - 1/’Q,d>d
d d d d
= <¢Q,d71'1PQ,dfl>d - <¢Q,dfllpo,d>d
2
d d d
= HlPQ,d—1Hd - <¢Q,d—1'lPQ,d>d'

Or, equivalently:

Ioscf = (),
Using the Cauchy-Schwarz inequality

[ (v | < lally [Vl

it follows that:
2
d d d d d
[#baa]f, = (#ha1vha), < [, 9],
d 2 i |7
< HlPQ'd_lHd = HIPQ'de

On the other hand, since each d-dimensional cell ¢ € C%\C?~! lies within a
d-dimensional plane, we know that the restriction of the function Q to c has
continuous gradients. Thus, we have:

[ = & e [ ||vubd o
ocex,(CY)

ag

So there exists an interpolated quadratic function gb‘é, ;1 with lower energy
than the exact interpolation lde/ ;- However, the Dirichlet energy does not van-
ish for quadratic functions. Therefore, it remains to be shown that no other in-
terpolation defined by the coarse nodes of the polygon yields a lower Dirichlet
energy than the exact function. However, it potentially has a non-zero gradient-
continuity energy instead. In this case, the chosen prolongation weights might
differ from those needed for interpolating the exact quadratic function. Here,
we run into a similar problem as discussed in Section B.5. If our energy were en-
tirely defined in terms of gradient continuity, meaning ¢ = 0, we could finish
the proof, and the interpolated function would be exact. However, we must
choose a small ¢ = 1078 to guarantee the properties listed in Appendix B.
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C.1 QUADRATIC PRECISION OF THE BASIS Lgfl

While this also makes the space of potentially interpolated functions with non-
continuous gradients but lower Dirichlet energies arbitrarily small, we come
only arbitrarily close to the quadratic precision property, depending on the cho-
sen ¢. So, this thesis has no exact proof of quadratic precision. Regardless, the
potential is there. A different set of constraints instead of the Dirichlet regular-
izer might exist that can yield functions that satisfy all the properties presented
in Appendix B and C. However, this remains to be shown.

]
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